934 resultados para Depression Glutamate Receptors Opioids Dopamine Neurokinins Purinoceptors Neurotrophins Serotonin
Resumo:
The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP
Resumo:
Fencamfamine (FCF) is a psychostimulant drug classified as an indirect dopamine agonist. In the present study we evaluated the daily variation in plasma FCF concentration and in striatal dopamine receptors. Adult male Wistar rats (250-300 g) maintained on a 12-h light/12-h dark cycle (lights on at 07:00 h) were used. Rats received FCF (10.0 mg/kg, ip) at 09:00, 15:00, 21:00 or 03:00 h and blood samples were collected 30 (N = 6) or 60 (N = 6) min after the injections. Plasma FCF was measured by gas chromatography using an electron capture detector. Two-way ANOVA showed significant differences in FCF concentration when blood samples were collected 30 min after the injection, and the highest value was obtained following injection 21:00 h. Moreover, at 15:00, 21:00 and 03:00h, plasma FCF levels were significantly lower 60 min after injection when compared to the 30-min interval. Two other groups of rats (N = 6) were decapitated at 09:00 or 21:00 h and the striata were dissected for the binding assays. The Bmax for [H-3]-spiroperidol binding to striatal membranes was higher at 21:00 h, without changes in affinity constant (Kd). In conclusion, plasma FCF levels and dopamine receptors undergo daily variation,a phenomenon that should be considered to explain the circadian time-dependent effects of FCF.
Resumo:
Fencamfamine (FCF) is a psychostimulant classified as an indirect dopamine agonist. The conditioning place preference (CPP) paradigm was used to investigate the reinforcing properties of FCF. After initial preferences had been determined, animals were conditioned with FCF (1.75, 3.5, or 7.0 mg/kg; IP). Only at the dose of 3.5 mg/kg FCF produced a significant place preference. Pretreatment with SCH23390 (0.05 mg/kg, SC) or naloxone (1.0 mg/kg SC) 10 min before FCF (3.5 mg/kg; IP) blocked both FCF-induced hyperactivity and CPP. Pretreatment with metoclopramide (10.0 mg/kg; IP) or pimozide (1.0 mg/kg, IP), respectively, 30 min or 4 h before FCF (3.5 mg/kg; IP), which blocked the FCF-induced locomotor activity, failed to influence place conditioning produced by FCF. In conclusion, the present study suggests that dopamine D 1 and opioid receptors are related to FCF reinforcing effect, while dopamine D 2 subtype receptor was ineffective in modifying FCF-induced CPP.
Resumo:
The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The 21 itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 mu g/0.25 mu l) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and a-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aim: It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia. As opioid mu-receptors have been found in the MR, we studied the putative role of opioid mu-receptors in the rostral MR (rMR) region on ventilation in normal and 7% hypoxic conditions. Methods: We measured pulmonary ventilation ((V) over dotE) and the body temperatures (Tb) of male Wistar rats before and after the selective opioid l-receptor antagonist CTAP ( d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2, cyclic, 0.1 mu g per 0.1 mu L) was microinjected into the rMR during normoxia or after 60 min of hypoxia. Results: The animals treated with intra-rMR CTAP exhibited an attenuation of the ventilatory response to hypoxia ( 430 +/- 86 mL kg) 1 min) 1) compared with the control group ( 790 +/- 82 mL kg) 1 min) 1) ( P < 0.05). No differences in the Tb were observed between groups during hypoxia. Conclusion: These data suggest that opioids acting on l-receptors in the rMR exert an excitatory modulation of hyperventilation induced by hypoxia.
Resumo:
CB1, TRPV1 and NO can regulate glutamate release and modify defensive behaviors in regions related to defensive behavior such as the dorsolateral periaqueductal gray (dIPAG). A possible interaction between the endocannabinoid and nitrergic systems in this area, however, has not been investigated yet. The objective of the present work was to verify if activation of CB1 or TRPV1 receptors could interfere in the flight responses induced in rats by the injection of SIN-1, an NO donor, into the dIPAG. The results showed that local administration of a low dose (5 pmol) of anandamide (AEA) attenuated the flight responses, measured by the total distance moved and maximum speed in an open arena, induced by intra-dIPAG microinjection of SIN-1 (150 nmol). URB597 (0.1 nmol), an inhibitor of anandamide metabolism, produced similar effects. When animals were locally treated with the CB1 receptor antagonist AM251 the effective AEA dose (5 pmol) increased, rather than decreased, the flight reactions induced by SIN1-1. Higher (50-200 nmol) doses of AEA were ineffective and even tended to potentiate the SIN-1 effect. The TRPV1 antagonist capsazepine (CPZ, 30 nmol) prevented SIN-1 effects and attenuated the potentiation of its effect by the higher (200 nmol) AEA dose. The results indicate that AEA can modulate in a dual way the pro-aversive effects of NO in the dIPAG by activating CB1 or TRPV1 receptors. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clinical and preclinical evidence suggests a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for novel therapeutic approaches to depression. The goal of this study was to compare mGluR5 binding (in a positron emission tomography [PET] study) and mGluR5 protein expression (in a postmortem study) between individuals with major depressive disorder and psychiatrically healthy comparison subjects.
Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells
Resumo:
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
Resumo:
Repeated exposure to psychomotor stimulants produces a striking behavioral syndrome involving repetitive, stereotypic behaviors that occur if an additional exposure to the stimulant is experienced. The same stimulant exposure produces specific alterations in gene expression patterns in the striatum. To identify the dopamine receptor subtypes required for the parallel expression of these acquired neural and behavioral responses, we treated rats with different D1-class and D2-class dopamine receptor agonists and compared the responses of drug-naive rats with those of rats given previous intermittent treatment with cocaine. In rats exposed to repeated cocaine treatment, the effects of a subsequent challenge treatment with either a D1-class agonist (SKF 81297) or a D2-class agonist (quinpirole) were not significantly different from those observed in drug-naive animals: the drugs administered singly did not induce robust stereotyped motor behaviors nor produce significantly striosome-predominant expression of early genes in the striatum. In contrast, challenge treatment with the D1-class and D2-class agonists in combination led to marked and correlated increases in stereotypy and striosome-predominant gene expression in the striatum. Thus, immediately after repeated psychomotor stimulant exposure, only the concurrent activation of D1 and D2 receptor subclasses evoked expression of the neural and behavioral phenotypes acquired through repeated cocaine exposure. These findings suggest that D1-D2 dopamine receptor synergisms underlie the coordinate expression of both network-level changes in basal ganglia activation patterns and the repetitive and stereotypic motor response patterns characteristic of psychomotor stimulant sensitization.
Resumo:
Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.
Resumo:
The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation.
Resumo:
Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.
Resumo:
The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hippocampal bursts that continued to spread to the entorhinal cortex. Separation of CA3 from the entorhinal cortex caused the activity in the latter to become asynchronous with CA3 activity in the presence of bicuculline and disappear after washout; however, in CA3, neither the induction of bursting nor its persistence were affected. Associated with the CA3 persistent bursting, a strengthening of recurrent collateral excitatory input to CA3 pyramidal cells and a decreased input to CA3 interneurons was found. Both the induction of the persistent bursting and the changes in synaptic strength were prevented by antagonists of metabotropic glutamate 5 (mGlu5) or NMDA receptors or protein synthesis inhibitors and did not occur in slices from mGlu5 receptor knock-out mice. The above findings suggest potential synaptic mechanisms by which the hippocampus switches to a persistent interictal bursting mode that may support a spread of interictal-like bursting to surrounding temporal lobe regions.