936 resultados para Degradation process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol-gel process were employed in the degradation of rhodamine at 10 mg L-1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450 degrees C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K-app) of 0.023 min(-1). The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024 min(-1) for 450, 500, 550 and 600 degrees C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017 min(-1), which is similar to that of the commercial titania.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymatic biodegradation of polydioxanone (PDO) in trifluoroethanol (TFE) at various temperatures (25-55 degrees C) was studied with two different types of lipases, namely immobilized enzyme Novozym 435 and free enzyme porcine pancreas lipase. The biodegradation process was monitored by gel permeation chromatography (GPC). Both enzymes showed the optimum activity at 37 degrees C and Novozym 435 exhibited better thermal stability over the experimental temperature range. A continuous distribution kinetic model was employed to describe the biodegradation process and the model was used to fit the experimental data satisfactorily and obtain kinetic parameters. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal based thermal microactuators normally have lower operation temperatures than those of Si-based ones; hence they have great potential for applications. However, metal-based thermal actuators easily suffer from degradation such as plastic deformation. In this study, planar thermal actuators were made by a single mask process using electroplated nickel as the active material, and their thermal degradation has been studied. Electrical tests show that the Ni-based thermal actuators deliver a maximum displacement of ∼20μm at an average temperature of ∼420°C, much lower than that of Si-based microactuators. However, the displacement strongly depends on the frequency and peak voltage of the pulse applied. Back bending was clearly observed at a maximum temperature as low as 240°C. Both forward and backward displacements increase with increasing the temperature up to ∼450°C, and then decreases with power. Scanning electron microscopy observation clearly showed that Ni structure deforms and reflows at power above 50mW. The compressive stress is believed to be responsible for Ni piling-up (creep), while the tensile stress upon removing the pulse current is responsible for necking at the hottest section of the device. Energy dispersive X-ray diffraction analysis revealed severe oxidation of the Ni-structure induced by Joule-heating of the current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the ozonation of 17 alpha-ethinylestradiol (EE2) in aqueous solution. The affecting factors on the degradation of EE2 were studied and described in details, such as initial EE2 concentration, initial pH value and ozone concentration. In addition, some parameters such as pH. electrical conductivity, mineralization efficiency and degradation products were monitored during the process. The mineralization efficiency of EE2 could reach 53.9%. During the ozonation process the rapid decrease of pH and the sharp increase of electrical conductivity indicated the fort-nation of acidic by-products, small fragments and ions which were confirmed by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GUMS) analysis. Results showed that there were intermediate products of smaller molecule with higher polarity produced during the course of EE2 degradation. Then a possible reaction pathway for EE2 degradation involving all intermediates detected is proposed. During the ozonation process EE2 was first oxidized into hydroxyl-semiquinone isomers which were subsequently degraded into low molecular weight compounds such as oxalic acid, malonate, glutarate, and so on. Furthermore. these organic acids are easily oxidized by ozone into carbon dioxide (CO2). This work shows that ozonation process is promising for the removal of EE2. The results can provide some useful information for the potential treatment of EE2 by ozonation in aqueous solution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical and efficient disposal method for hydrodechlormation of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)(2) + i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls. (c) 2004 Elsevier Ltd. All rights reserved.