884 resultados para Data structures
Resumo:
This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
Scientific workflows orchestrate the execution of complex experiments frequently using distributed computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing workflows from potentially different workflow systems to achieve more complex and experimentation minimizing workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. This paper is focused at fostering interoperability across meta-workflows that combine workflows of different workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow and its different types to standardize their data structures used to describe workflows to be published and shared via public repositories. The paper also includes thorough formalization of two workflow interoperability approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the concepts of meta-workflows and workflow interoperability within a scientific simulation platform.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Starting with an evaluator for a language, an abstract machine for the same language can be mechanically derived using successive program transformations. This has relevance to studying both the space and time properties of programs because these can be estimated by counting transitions of the abstract machine and measuring the size of the additional data structures needed, such as environments and stacks. In this article we use this process to derive a function that accurately counts the number of steps required to evaluate expressions in a simple language.
Resumo:
Coinduction is a method of growing importance in reasoning about functional languages, due to the increasing prominence of lazy data structures. Through the use of bisimulations and proofs that bisimilarity is a congruence in various domains it can be used to prove the congruence of two processes. A coinductive proof requires a relation to be chosen which can be proved to be a bisimulation. We use proof planning to develop a heuristic method which automatically constucts a candidate relation. If this relation doesn't allow the proof to go through a proof critic analyses the reasons why it failed and modifies the relation accordingly. Several proof tools have been developed to aid coinductive proofs but all require user interaction. Crucially they require the user to supply an appropriate relation which the system can then prove to be a bisimulation.
Resumo:
A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.
Resumo:
Reconfigurable HW can be used to build a hardware multitasking system where tasks can be assigned to the reconfigurable HW at run-time according to the requirements of the running applications. Normally the execution in this kind of systems is controlled by an embedded processor. In these systems tasks are frequently represented as subtask graphs, where a subtask is the basic scheduling unit that can be assigned to a reconfigurable HW. In order to control the execution of these tasks, the processor must manage at run-time complex data structures, like graphs or linked list, which may generate significant execution-time penalties. In addition, HW/SW communications are frequently a system bottleneck. Hence, it is very interesting to find a way to reduce the run-time SW computations and the HW/SW communications. To this end we have developed a HW execution manager that controls the execution of subtask graphs over a set of reconfigurable units. This manager receives as input a subtask graph coupled to a subtask schedule, and guarantees its proper execution. In addition it includes support to reduce the execution-time overhead due to reconfigurations. With this HW support the execution of task graphs can be managed efficiently generating only very small run-time penalties.
Resumo:
Dissertação de Mestrado, Gestão Empresarial, Faculdade de Economia, Universidade do Algarve, 2015
Resumo:
This thesis presents a cloud-based software platform for sharing publicly available scientific datasets. The proposed platform leverages the potential of NoSQL databases and asynchronous IO technologies, such as Node.JS, in order to achieve high performances and flexible solutions. This solution will serve two main groups of users. The dataset providers, which are the researchers responsible for sharing and maintaining datasets, and the dataset users, that are those who desire to access the public data. To the former are given tools to easily publish and maintain large volumes of data, whereas the later are given tools to enable the preview and creation of subsets of the original data through the introduction of filter and aggregation operations. The choice of NoSQL over more traditional RDDMS emerged from and extended benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also presented in this thesis. The obtained results come to confirm the theoretical guarantees that NoSQL databases are more suitable for the kind of data that our system users will be handling, i. e., non-homogeneous data structures that can grow really fast. It is envisioned that a platform like this can lead the way to a new era of scientific data sharing where researchers are able to easily share and access all kinds of datasets, and even in more advanced scenarios be presented with recommended datasets and already existing research results on top of those recommendations.
Resumo:
This thesis presents a cloud-based software platform for sharing publicly available scientific datasets. The proposed platform leverages the potential of NoSQL databases and asynchronous IO technologies, such as Node.JS, in order to achieve high performances and flexible solutions. This solution will serve two main groups of users. The dataset providers, which are the researchers responsible for sharing and maintaining datasets, and the dataset users, that are those who desire to access the public data. To the former are given tools to easily publish and maintain large volumes of data, whereas the later are given tools to enable the preview and creation of subsets of the original data through the introduction of filter and aggregation operations. The choice of NoSQL over more traditional RDDMS emerged from and extended benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also presented in this thesis. The obtained results come to confirm the theoretical guarantees that NoSQL databases are more suitable for the kind of data that our system users will be handling, i. e., non-homogeneous data structures that can grow really fast. It is envisioned that a platform like this can lead the way to a new era of scientific data sharing where researchers are able to easily share and access all kinds of datasets, and even in more advanced scenarios be presented with recommended datasets and already existing research results on top of those recommendations.