859 resultados para Data mining, Business intelligence, Previsioni di mercato
Resumo:
This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.
Resumo:
Tässä diplomityössä selvitetään case-tutkimuksena parhaita käytäntöjä Business Intelligence Competency Centerin (BICC) eli liiketoimintatiedonhallinnan osaamiskeskuksen perustamiseen. Työ tehdään LähiTapiolalle, jossa on haasteita BI-alueen hallinnoinnissa kehittämisen hajaantuessa eri yksiköihin ja yhtiöihin. Myös järjestelmäympäristö on moninainen. BICC:llä tavoitellaan parempaa näkyvyyttä liiketoiminnan tarpeisiin ja toisaalta halutaan tehostaa tiedon hyödyntämistä johtamisessa sekä operatiivisen tason työskentelyssä. Tavoitteena on lisäksi saada kustannuksia pienemmäksi yhtenäistämällä järjestelmäympäristöjä ja BI-työkaluja kuten myös toimintamalleja. Työssä tehdään kirjallisuuskatsaus ja haastatellaan asiantuntijoita kolmessa yrityksessä. Tutkimuksen perusteella voidaan todeta, että liiketoiminnan BI-tarpeita kannattaa mahdollistaa eri tasoilla perusraportoinnista Ad-hoc –raportointiin ja edistyneeseen analytiikkaan huomioimalla nämä toimintamalleissa ja järjestelmäarkkitehtuurissa. BICC:n perustamisessa liiketoimintatarpeisiin vastaaminen on etusijalla.
Resumo:
Työn tavoitteena on tutkia Business Intelligencen ja BI-työkalujen vaatimusten kehittymistä viime vuosien aikana ja tutkia miten Microsoft Power BI -ohjelmisto vastaa modernin päätöksenteon tarpeisiin. Työ on toteutettu suurimmalta osin kirjallisuuskatsauksena, minkä lisäksi Microsoft Power BI:n toiminnallisuutta on tutkittu käytännössä käyttäen ohjelmiston ilmaisversiota. Tutkimuksessa on havaittu, että tiedon lähteiden määrän ja datan monimuotoisuuden kasvaessa on syntynyt tarve uusille, tehokkaille BI-järjestelmäratkaisuille, jotka hyödyntävät uudenlaisia menetelmiä. Modernissa BI 2.0 -mallissa korostuvat kehittyneemmän verkkoinfrastruktuurin ja ohjelmistotekniikan täysi hyödyntäminen, käytön helppous, tiedon tuottaminen ja jakaminen massoille, tiedon rikastamisen mahdollistaminen ja visualisoinnin ja interaktiivisuuden keskeinen asema tiedon tulkinnassa. Tutkimuksen perusteella Microsoft Power BI vaikuttaisi täyttävän keskeneräisyydestään ja muutamista tiedonhallinnallisista puutteistaan huolimatta lähes kaikki toimivan BI 2.0 -järjestelmän määritelmistä. Ohjelmisto tarjoaa riittävät analyyttiset ja esitystekniset työkalut useimpien tyypillisten käyttäjien tarpeisiin, minkä lisäksi paranneltu Location Intelligence -ratkaisu sekä uudet Q&A ja nopea oivallus -toiminnot luovat mielenkiintoisen tavan selata dataa. Jää nähtäväksi, miten ratkaisu kehittyy vielä tulevaisuudessa.
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
In the current study, epidemiology study is done by means of literature survey in groups identified to be at higher potential for DDIs as well as in other cases to explore patterns of DDIs and the factors affecting them. The structure of the FDA Adverse Event Reporting System (FAERS) database is studied and analyzed in detail to identify issues and challenges in data mining the drug-drug interactions. The necessary pre-processing algorithms are developed based on the analysis and the Apriori algorithm is modified to suit the process. Finally, the modules are integrated into a tool to identify DDIs. The results are compared using standard drug interaction database for validation. 31% of the associations obtained were identified to be new and the match with existing interactions was 69%. This match clearly indicates the validity of the methodology and its applicability to similar databases. Formulation of the results using the generic names expanded the relevance of the results to a global scale. The global applicability helps the health care professionals worldwide to observe caution during various stages of drug administration thus considerably enhancing pharmacovigilance
Resumo:
Das Management von Kundenbeziehungen hat sich in der klassischen Ökonomie unter dem Begriff »Customer Relationship Management« (kurz: CRM) etabliert und sich in den letzten Jahren als erfolgreicher Ansatz erwiesen. In der grundlegenden Zielsetzung, wertvolle, d.h. profitable und kreditwürdige Kunden an ein Unternehmen zu binden, kommen Business-Intelligence Technologien zur Generierung von Kundenwissen aus kundenbezogenen Daten zum Einsatz. Als technologische Plattform der Kommunikation und Interaktion gewähren Business Communities einen direkten Einblick in die Gedanken und Präferenzen der Kunden. Von Business-Communitybasiertem Wissen der Kunden und über Kunden können individuelle Kundenbedürfnisse, Verhaltensweisen und damit auch wertvolle (potenzielle, profilgleiche) Kunden abgeleitet werden, was eine differenziertere und selektivere Behandlung der Kunden möglich macht. Business Communities bieten ein umfassendes Datenpotenzial, welches jedoch bis dato für das CRM im Firmenkundengeschäft respektive die Profilbildung noch nicht genutzt wird. Synergiepotenziale von der Datenquelle "Business Community" und der Technologie "Business Intelligence" werden bislang vernachlässigt. An dieser Stelle setzt die Arbeit an. Das Ziel ist die sinnvolle Zusammenführung beider Ansätze zu einem erweiterten Ansatz für das Management der irmenkundenbeziehung. Dazu wird ein BIgestütztes CRM-Konzept für die Generierung, Analyse und Optimierung von Kundenwissen erarbeitet, welches speziell durch den Einsatz einer B2B-Community gewonnen und für eine Profilbildung genutzt wird. Es soll durch die Anbindung von Fremddatenbanken Optimierung finden: In den Prozess der Wissensgenerierung fließen zur Datenqualifizierung und -quantifizierung externe (Kunden-) Daten ein, die von Fremddatenbanken (wie z.B. Information Provider, Wirtschaftsauskunftsdienste) bereitgestellt werden. Der Kern dieser Zielsetzung liegt in der umfassenden Generierung und stetigen Optimierung von Wissen, das den Aufbau einer langfristigen, individuellen und wertvollen Kundenbeziehung unterstützen soll.
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation