793 resultados para Copper retention
Resumo:
Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu) and zinc (Zn) fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC), Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2.5, 2.5-5.0, 5-10 and 10-15 cm layers in treatments consisting of no manure application (control) and with applications of pig slurry and deep litter at two levels: the single and double rate of N requirement for maize and black oat succession. The soil was dried, ground in an agate mortar and analyzed for Cu and Zn contents by 0.01 mol L-1 EDTA and chemically fractionated to determine Cu and Zn. The applications of Pig deep litter and slurry at doses equivalent to 90 kg ha-1 N increased the contents of available Cu and Zn in the surface soil layer, if the double of this dose was applied in pig deep litter or double this dose in pig slurry, Cu and Zn migrated to a depth of 15 cm. Copper is accumulated mainly in the organic and residual fractions, and zinc preferentially in the fraction linked to clay minerals, especially in the surface soil layers.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.
Resumo:
Alternative copper (Cu) sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC), 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE) of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol) and Neossolo Quartzarênico (Typic Quartzipsamment). Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.
Resumo:
ABSTRACT High cost and long time required to determine a retention curve by the conventional methods of the Richards Chamber and Haines Funnel limit its use; therefore, alternative methods to facilitate this routine are needed. The filter paper method to determine the soil water retention curve was evaluated and compared to the conventional method. Undisturbed samples were collected from five different soils. Using a Haines Funnel and Richards Chamber, moisture content was obtained for tensions of 2; 4; 6; 8; 10; 33; 100; 300; 700; and 1,500 kPa. In the filter paper test, the soil matric potential was obtained from the filter-paper calibration equation, and the moisture subsequently determined based on the gravimetric difference. The van Genuchten model was fitted to the observed data of soil matric potential versus moisture. Moisture values of the conventional and the filter paper methods, estimated by the van Genuchten model, were compared. The filter paper method, with R2 of 0.99, can be used to determine water retention curves of agricultural soils as an alternative to the conventional method.
Resumo:
Plutonium and Sr-90 are considered to be among the most radiotoxic nuclides produced by the nuclear fission process. In spite of numerous studies on mammals and humans there is still no general agreement on the retention half time of both radionuclides in the skeleton in the general population. Here we determined plutonium and Sr-90 in human vertebrae in individuals deceased between 1960 and 2004 in Switzerland. Plutonium was measured by sensitive SF-ICP-MS techniques and Sr-90 by radiometric methods. We compared our results to the ones obtained for other environmental compartments to reveal the retention half time of NBT fallout Pu-239 and Sr-90 in trabecular bones of the Swiss population. Results show that plutonium has a retention half time of 40 +/- 14 years. In contrast Sr-90 has a shorter retention half time of 13.5 +/- 1.0 years. Moreover Sr-90 retention half time in vertebrae is shown to be linked to the retention half time in food and other environmental compartments. These findings demonstrate that the renewal of the vertebrae through calcium homeostatic control is faster for Sr-90 excretion than for plutonium excretion. The precise determination of the retention half time of plutonium in the skeleton will improve the biokinetic model of plutonium metabolism in humans. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
Retention elections are intended to focus on the professional competency of Iowa’s judges rather than the popularity of individual rulings. In a retention election, voters decide whether a judge should be retained or removed from office. If a judge receives a majority of “yes” votes, the judge serves another full term. If a judge receives a majority of “no” votes, the judge is removed from office at the end of the year.
Resumo:
The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(111) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances of secondary Fe(III) hydroxide precipitates below the oxidation front and the high concentrations of Fe(II) observed in the pore waters of some low-sulfide systems. The reduction of Fe(III) and the subsequent increase of iron mobility and potential acidity transfer (Fe(II) oxidation can result in the release of H+ in an oxic environment) should be taken in account in mine waste management strategies.
Resumo:
Experiments are reported on fractal copper electrodeposits. An electrochemical cell was designed in order to obtain a potentiostatic control on the quasi-two-dimensional electrodeposition process. The aim was focused on the analysis of the growth rate of the electrodeposited phase, in particular its dependence on the electrode potential and electrolyte concentration.
An analysis of the influence of shrinkage on water retention characteristics of fen peat-moorsh soil