698 resultados para Ceramic engineering
Resumo:
Esta dissertação teve como objetivo o desenvolvimento de espumas porosas de hidroxiapatite (HA) baseadas em réplicas invertidas de cristais coloidais (ICC) para substituição óssea. Um ICC é uma estrutura tridimensional de elevada porosidade que apresenta uma rede interconectada de poros com elevada uniformidade de tamanhos. Este tipo de arquitetura possibilita uma proliferação celular homogénea e superiores propriedades mecânicas quando comparada com espumas de geometria não uniforme. O cristal coloidal (CC) - o molde da espuma - foi criado por empacotamento de microesferas de poliestireno (270 μm) produzidas por microfluídica e posterior tratamento térmico. O molde foi impregnado com um gel de hidroxiapatite produzido via sol-gel utilizando pentóxido de fósforo e nitrato de cálcio tetrahidratado como percursores de fósforo e cálcio, respectivamente. A espuma cerâmica foi obtida num único passo depois de um tratamento térmico a 1100oC que permitiu a solidificação do gel e a remoção do CC. A análise por espetroscopia de infravermelho por transformada de Fourier (FTIR) e difração de raios-X (XRD) revelou uma hidroxiapatite carbonatada tipo A com presença de fosfatos tricálcicos. As propriedades mecânicas foram avaliadas por testes de compressão. A biocompatibilidade in vitro foi demonstrada através de testes de adesão e proliferação celular de osteoblastos.
Resumo:
In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
This case study illustrates the application of the Value Creation Radar (VCR) to SenSyF, an Earth Observation (EO) system which was developed by Deimos Engenharia S.A. (DME), the Portuguese affiliate of Elecnor Deimos. It describes how a team of consultants adopted the VCR in order to find new market applications for SenSyF, selected the one with the highest potential, and defined a path to guarantee a sustainable market launch. This case study highlights the main challenges of bringing a technology-driven company closer to the market in the pursuit of long-term sustainability, while not compromising its technological capabilities
Resumo:
The thymus is the central organ responsible for the generation of T lymphocytes (1). Various diseases cause the thymus to produce in- sufficient T cells, which can lead to immune-suppression (2). Since T cells are essential for the protection against pathogens, it is crucial to promote de novo differentiation of T cells on diseased individuals. The available clinical solutions are: 1) one protocol involving the transplant of thymic stroma from unrelated children only applicable for athymic children (3); 2) for patients with severe peripheral T cell depletion and reduced thymic activity, the administration of stimu- lating molecules stimulating the activity of the endogenous thymus (4). A scaffold (CellFoam) was suggested to support thymus regen- eration in vivo (5), although this research was discontinued. Herein, we propose an innovative strategy to generate a bioartificial thymus. We use a polycaprolactone nanofiber mesh (PCL-NFM) seeded and cultured with human thymic epithelial cells (hTECs). The cells were obtained from infant thymus collected during pediatric cardio-tho- racic surgeries. We report new data on the isolation and characterization of those cells and their interaction with PCL-NFM, by expanding hTECs into relevant numbers and by optimizing cell seeding methods.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.
Resumo:
The occurrence of audible squeaking in some patients with ceramic-on-ceramic (CoC) hip prostheses is a cause for concern. Considering multifactor contributing to this phenomenon, many studies have been conducted over the last decade. Great efforts have been put on understanding the mechanics of the hip squeaking to gain a deep insight into factors resulting in sound emission from hip articulation. Disruption of fluid-film lubrication and friction were reported as main potential causes of hip squeaking, while patient and surgical factors as well as design and material of hip implants were identified as affecting factors. This review article therefore summarised the recent available literature on this subject to provide a platform for future developments. Moreover, high wear rates and ceramic liner fracture as viable consequences of hip squeaking were discussed.
Resumo:
This paper presents a framework of competences developed for Industrial Engineering and Management that can be used as a tool for curriculum analysis and design, including the teaching and learning processes as well as the alignment of the curriculum with the professional profile. The framework was applied to the Industrial Engineering and Management program at University of Minho (UMinho), Portugal, and it provides an overview of the connection between IEM knowledge areas and the competences defined in its curriculum. The framework of competences was developed through a process of analysis using a combination of methods and sources for data collection. The framework was developed according to four main steps: 1) characterization of IEM knowledge areas; 2) definition of IEM competences; 3) survey; 4) application of the framework at the IEM curriculum. The findings showed that the framework is useful to build an integrated vision of the curriculum. The most visible aspect in the learning outcomes of IEM program is the lack of balance between technical and transversal competences. There was not almost any reference to the transversal competences and it is fundamentally concentrated on Project-Based Learning courses. The framework presented in this paper provides a contribution to the definition of IEM professional profile through a set of competences which need to be explored further. In addition, it may be a relevant tool for IEM curriculum analysis and a contribution for bridging the gap between universities and companies.
Resumo:
Several archaeological black earth (ABE) sites occur in the Amazon region. They contain fragments of ceramic artifacts, which are very important for the archaeological purpose. In order to improve the archaeological study in the region we carried out a detailed mineralogical and chemical study of the fragments of ceramic artifacts found in the two ABE sites of Cachoeira-Porteira, in the Lower Amazon Region. Their ceramics comprise the following tempers: cauixi, cariapé, sand, sand +feldspars, crushed ceramic and so on and are composed of quartz, clay equivalent material (mainly burned kaolinite), feldspars, hematite, goethite, maghemite, phosphates, anatase, and minerals of Mn and Ba. Cauixi and cariapé, siliceous organic compounds, were found too. The mineralogical composition and the morphology of their grains indicate a saprolite (clayey material rich on quartz) derived from fine-grained felsic igneous rocks or sedimentary rocks as source material for ceramic artifacts, where silica-rich components such cauixi, cariapé and/or sand (feldspar and rock fragments) were intentionally added to them. The high content of (Al,Fe)-phosphates, amorphous to low crystalline, must be product of the contact between the clayey matrix of pottery wall and the hot aqueous solution formed during the daily cooking of animal foods (main source of phosphor). The phosphate crystallization took place during the discharge of the potteries put together with waste of organic material from animal and vegetal origin, and leaving to the formation of the ABE-soil profile.
Resumo:
This paper carried out a chemical investigation of archaeological ceramic artifacts found in archaeological sites with Black Earth (ABE) in the Lower Amazon Region at Cachoeira-Porteira, State of Pará, Brazil. The ceramic artifacts, mostly of daily use, belong to Konduri culture (from 900 to 400 years BP). They are constituted of SiO2, Al2O3, Fe2O3, Na2O and P2O5; SiO2 and Al2O3 together add up to 80 % and indicate influence of acid rocks, transformed into clay minerals basically kaolinite. The relative high contents of P2O5 (2.37 % in average) come out as (Al,Fe)-phosphate, an uncommon fact in primitive red ceramics, but found in some roman and egyptian archaeological sites. The contents of the trace elements are similar or below the Earth's crust average. This chemical composition (except P2O5) detaches saprolite material derived acid igneous rocks or sedimentary ones as the main raw material of the ceramics. The contents of K, Na and Ca represent the feldspars and rock fragments possibly introduced into saprolitic groundmass, indicated by mineralogical studies. The presence of cauixi and cariapé as well as quartz sand was confirmed by optical microscope, SEM analyses and by the high silica contents of ceramic fragments. Phosphorus was possibly incorporated into groundmass during cooking of foods, and ABE soil profile formation developed on yellow Latosols. The raw materials and its tempers (cauixi, or cariapé, feldspar, crushed rocks, old ceramic artifacts and quartz fragments) are found close to the sites and therefore and certainly came from them.