986 resultados para Cell concentrations
Resumo:
The inhibitory effect of supraphysiological iodide concentrations on thyroid hormone synthesis (Wolff - Chaikoff effect) and on thyrocyte proliferation is largely known as iodine autoregulation. However, the molecular mechanisms by which iodide modulates thyroid function remain unclear. In this paper, we analyze the transcriptome profile of the rat follicular cell lineage PCCl3 under untreated and treated conditions with 10 (- 3) M sodium iodide (NaI). Serial analysis of gene expression (SAGE) revealed 84 transcripts differentially expressed in response to iodide (p <= 0.001). We also showed that iodide excess inhibits the expression of essential genes for thyroid differentiation: Tshr, Nis, Tg, and Tpo. Relative expression of 14 of 20 transcripts selected by SAGE was confirmed by real-time PCR. Considering the key role of iodide organification in thyroid physiology, we also observed that both the oxidized form of iodide and iodide per se are responsible for gene expression modulation in response to iodide excess. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Abnormal surface expression of HLA-DR by leukocytes is associated with a poor prognosis in critical care patients. Critical care patients often receive total parenteral nutrition with lipid emulsion (LE). In this study we evaluated the influence of fish oil LE (FO) on human monocyte/macrophage (M phi) expression of surface HLA-DR under distinct activation states. Mononuclear leukocytes from the peripheral blood of healthy volunteers (n = 18) were cultured for 24 hours without LE (control) or with 3 different concentrations (0.1, 0.25, and 0.5%) of the follow LE: a) pure FO b) FO in association (1:1 v/v) with LE composed of 50% medium-chain trygliceride and 50% soybean oil (MCTSO), and c) pure MCTSO. The leukocytes were also submitted to different cell activation states, as determinate by INF-gamma addition time: no INF-gamma addition, 18 hours before, or at the time of LE addition. HLA-DR expression on M phi surface was evaluated by flow cytometry using specific monoclonal antibodies. In relation to controls (for 0.1%, 0.25%, and 0.5%: 100) FO decreased the expression of HLA-DR when added alone [in simultaneously-activated M phi, for 0.1%: 70 (59 +/- 73); for 0.25%: 51 (48 +/- 56); and for 0.5%: 52.5(50 +/- 58)] or in association with MCTSO [in simultaneously-activated M phi, for 0.1%: 50.5 (47 +/- 61); for 25%: 49 (45 +/- 52); and for 05 %: 51 (44 +/- 54) and in previously-activated M phi, for 1.0 % : 63 (44 +/- 88); for 0.25%: 70 (41 +/- 88); and for 0.5%: 59.5 (39 +/- 79)] in culture medium (Friedman p<0.05). In relation to controls (for 0.1%, 0.25%, and 0.5%: 100), FO did not influence the expression of these molecules on non-activated M phi [for 0.1 % : 87.5 (75 +/- 93); for 0.25%: 111 (98 +/- 118); and for 0.5%: 101.5 (84 +/- 113)]. Results show that parenteral FO modulates the expression of HLA-DR on human M phi surface accordingly to leukocyte activation state. Further clinical studies evaluating the ideal moment of fish oil LE infusion to modulate leukocyte functions may contribute to a better understanding of its immune modulatory properties.
Resumo:
In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
The effects of age on microbiota composition, gut fermentation end-product formation and peripheral lymphocyte numbers were compared between old and young adult Beagle dogs fed four kibble diets differing in yeast cell wall contents. The experiment had a double 4 x 4 Latin square design, one with four mature dogs (4 years old) and the other with four old dogs (10 years old), with four replicates (diets) per dog. In each period a 15d adaptation period preceded a 5d total collection of faeces for the digestibility trial. on day 21, fresh faecal samples were collected for the determination of bacterial enumeration, pH, biogenic amine and short-chain fatty acid. Flow cytometry was used for immunophenotypic evaluation. Dogs were fed four kibble diets with similar composition with 0, 0.15, 0.30 and 0.45% of yeast cell wall (as-fed), respectively. Data were evaluated using general linear models of Statistical Analysis Systems statistical software (P<0.05). No evidence of a difference in faecal bacteria counts between ages was found (total aerobes, total anaerobes, Bifidobacterium, Lactobacillus, Clostridium and Escherichia coli: P. 0.15). Faecal concentrations of butyrate, histamine, agmatine and spermine were lower (P <= 0.05) and faecal pH was higher (P=0.03) in older dogs than in mature adult dogs, suggesting an alteration in bacterial metabolic activity, or in the rate of intestinal absorption of these compounds. Concentrations of T-lymphocytes, T-cytotoxic lymphocytes and B-lymphocytes were also lower (P <= 0.01) in older dogs than in mature adult dogs. The study confirmed alterations in peripheral lymphocytes and revealed a reduced concentration of some fermentation end products in the colon of old dogs.
Resumo:
Trinta gatas, saudáveis, foram submetidas à ovariectomia pela técnica convencional e por videolaparoscopia. Amostras de sangue foram obtidas com o objetivo de verificar a intensidade da resposta inflamatória por meio da análise das concentrações de proteinas de fase aguda e contagem de leucócitos antes e até 144 horas após procedimento cirúrgico. As proteínas que apresentaram aumento significativo 24 horas após a cirurgia foram: ceruloplasmina, hemopexina, haptoglobina e α1-glicoproteína ácida, 69,8%, 103,5%, 117,3% e 199,0%, respectivamente, para ovariectomia convencional, e 22,3%, 46,1%, 79,8% e 74,6%, respectivamente, para ovariectomia por videolaparoscopia. A resposta inflamatória foi mais evidente nas gatas submetidas à ovariectomia convencional. Os resultados mostram aumento e diminuição na concentração de proteínas de fase aguda e na contagem de leucócitos, podendo ser utilizados na avaliação da resposta inflamatória induzida por procedimentos cirúrgicos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three ranges of increasing temperatures (35-43, 37-45, 39-47degreesC) were sequentially applied to a five-stage system continuously operated with cell recycling so that differences of 2degreesC (between one reactor to the next) and 8degreesC (between the first reactor at the highest temperature and the fifth at the lowest temperature) were kept among the reactors for each temperature range. The entire system was fed through the first reactor. The lowest values of biomass and viability were obtained for reactor R-3 located in the middle of the system. The highest yield of biomass was obtained in the effluent when the system was operated at 35-43degreesC. This nonconventional system was set up to simulate the local fluctuations in temperature and nutrient concentrations that occur in different regions of the medium in an industrial bioreactor for fuel ethanol production mainly in tropical climates. Minimized cell death and continuous sugar utilization were observed at temperatures normally considered too high for Saccharomyces cerevisiae fermentations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88 +/- 0.5 mmol/L) than fasted bats (4.0 +/- 0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3 g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the iplTT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study, two alkaloids isolated from Pterogyne nitens, a plant native to Brazil, have been shown to induce apoptosis in human breast cancer cells. These compounds, pterogynine (PGN) and pterogynidine (PGD), were tested for their effect on a human infiltrating ductal carcinoma cell line (ZR-7531). The cell line was treated with each alkaloid at several concentrations. Time-dependence (with or without recuperation time) and concentration-dependence (in the range 0.25-10 mM) were investigated in cytotoxicity and apoptosis assays. The annexin assay indicated an apparently higher percentage of death by necrosis of malignant cells after 24 h exposure to both P. nitens extracts than the Hoechst assay. Thus, our results in the two tests demonstrated that the Hoechst assay can discriminate between late apoptotic cells and necrosis, whereas the flow cytometry-based annexin V assay cannot. We concluded that PGN and PGD have effective antineoplastic activity against human breast cancer cells in vitro, by inducing programmed cell death.