1000 resultados para Cardiorespiratory interactions
Resumo:
Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.
Resumo:
Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution.
Resumo:
We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).
Resumo:
This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.
Resumo:
The parasitic weed Orobanche crenata inflicts major damage on faba bean, lentil, pea and other crops in Mediterranean environments. The development of methods to control O. crenata is to a large extent hampered by the complexity of host-parasite systems. Using a model of host-parasite interactions can help to explain and understand this intricacy. This paper reports on the evaluation and application of a model simulating host-parasite competition as affected by environment and management that was implemented in the framework of the Agricultural Production Systems Simulator (APSIM). Model-predicted faba bean and O. crenata growth and development were evaluated against independent data. The APSIM-Fababean and -Parasite modules displayed a good capability to reproduce effects of pedoclimatic conditions, faba bean sowing date and O. crenata infestation on host-parasite competition. The r(2) values throughout exceeded 0.84 (RMSD: 5.36 days) for phenological, 0.85 (RMSD: 223.00 g m(-2)) for host growth and 0.78 (RMSD: 99.82 g m(-2)) for parasite growth parameters. Inaccuracies of simulated faba bean root growth that caused some bias of predicted parasite number and host yield loss may be dealt with by more flexibly simulating vertical root distribution. The model was applied in simulation experiments to determine optimum sowing windows for infected and non-infected faba bean in Mediterranean environments. Simulation results proved realistic and testified to the capability of APSIM to contribute to the development of tactical approaches in parasitic weed control.
Resumo:
The phase-out of Mulesing by 2010 means the Australian wool industry requires immediate and viable alternatives for the control and prevention of blowfly strike, an economically important parasitic disease of sheep. In this review we have analysed previous research aimed toward the development of a vaccine against blowfly strike and the reasons why the approaches taken were unsuccessful at the time. Close scrutiny has provided new insight into this host-parasite interaction and identified new opportunities for the development of a vaccine. Here we propose that addressing immunosuppression together with the induction of cellular immunity is likely to result in an anti-blowfly strike vaccine, as opposed to the use of "standard" approaches aimed at inducing humoral immunity.
Resumo:
Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.
Resumo:
Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.
Resumo:
Electronic absorption and emission spectra as well as He(I) photoelectron spectra of 2,2,4,4-tetramethyl-,3-cyclobutanedithione and 2,2,4,4-tetramethyl-1-3-thio-1,3-cyclobutanedione have been interpreted on the basis of molecular orbital calculations. The results show that the non-bonded orbital of the dithione is split owing to through-bond interaction, the magnitude of splitting being 0.4 eV. The π* orbital of the dithione appears to be split by about 0.2 eV. Electronic absorption spectra show evidence for the existence of four n—π* transitions, arising out of the splitting of the orbitals referred to above, just as in the case of 2,2,4,4-tetramethyl-1,3-cyclobutanedione. Electronic and photoelectron spectra of the thio-dione show evidence for weak interaction between the C=S and C&.zdbnd;O groups, probably via π* orbitals. Infrared spectra of both the dithione and the thio-dione are consistent with the planar cyclobutane ring; the ring-puckering frequency responsible for non-bonded interactions is around 67 cm−1 in both the dithione and the thio-dione, the value not being very different from that in the dione. The 1,3-transannular distance is also similar in the three molecules.
Resumo:
The arutors studied the impact of a forage legume, butterfly pea, on rubber vine at the early establishment phase under seven planting combinations at three nitrogen fertiliser levels. In pure stands, both species increased their shoot and root dry weight yield in response to nitrogen but rubber vine exhibited the greater response. In mixed stands, rubber vine and butterfly pea did not compete with each other at any nitrogen level. An over-yielding response resulted in all mixture combinations in terms of shoot and root yields. Total shoot and root mass of mixed stands significantly out-yielded their highest yielding pure stands by 8% and 27% respectively, suggesting that butterfly pea not only failed to reduce shoot and root growth of rubber vine, but actually improved its growth performance. Consequently, the introduction of butterfly pea to suppress rubber vine is not warranted.
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5. Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.
Resumo:
The impact of cropping histories (sugarcane, maize and soybean), tillage practices (conventional tillage and direct drill) and fertiliser N in the plant and 1st ratoon (1R) crops of sugarcane were examined in field trials at Bundaberg and Ingham. Average yields at Ingham (Q200) and Bundaberg (Q151) were quite similar in both the plant crop (83 t/ha and 80 t/ha, respectively) and the 1R (89 t/ha v 94 t/ha, respectively), with only minor treatment effects on CCS at each site. Cane yield responses to tillage, break history and N fertiliser varied significantly between sites. There was a 27% yield increase in the plant crop from the soybean fallow at Ingham, with soybeans producing a yield advantage over continuous cane, but there were no clear break effects at Bundaberg - possibly due to a complex of pathogenic nematodes that responded differently to soybeans and maize breaks. There was no carryover benefit of the soybean break into the 1R crop at Ingham, while at Bundaberg the maize break produced a 15% yield advantage over soybeans and continuous cane. The Ingham site recorded positive responses to N fertiliser addition in both the plant (20% yield increase) and 1R (34% yield increase) crops, but there was negligible carryover benefit from plant crop N in the 1R crop, or of a reduced N response after a soybean rotation. By contrast, the Bundaberg site showed no N response in any history in the plant crop, and only a small (5%) yield increase with N applied in the 1R crop. There was again no evidence of a reduced N response in the 1R crop after a soybean fallow. There were no significant effects of tillage on cane yields at either site, although there were some minor interactions between tillage, breaks and N management in the 1R crop at both sites. Crop N contents at Bundaberg were more than 3 times those recorded at Ingham in both the plant and 1R crops, with N concentrations in millable stalk at Ingham suggesting N deficiencies in all treatments. There was negligible additional N recovered in crop biomass from N fertiliser application or soybean residues at the Ingham site. There was additional N recovered in crop biomass in response to N fertiliser and soybean breaks at Bundaberg, but effects were small and fertiliser use efficiencies poor. Loss pathways could not be quantified, but denitrification or losses in runoff were the likely causes at Ingham while leaching predominated at Bundaberg. Results highlight the complexity involved in developing sustainable farming systems for contrasting soil types and climatic conditions. A better understanding of key sugarcane pathogens and their host range, as well as improved capacity to predict in-crop N mineralisation, will be key factors in future improvements to sugarcane farming systems.
Resumo:
Net type net blotch (NTNB) is an important barley disease in Australia and elsewhere, with significant yield reduction. This trait is important in selection along with other traits of quality and agronomic value. Two-hundred doubled-haploid lines were generated through anther culture from a cross between 'Pompadour' and 'Stirling'. Quantitative trait loci (QTL) were identified against five isolates of Pyrenophora teres f. teres, which represent virulences across Australia. QTL were mapped on chromosomes 3H and 6H using simple sequence repeat (SSR) markers. The resistance locus on 6H was detected with all isolates while the 3H locus was detected with two isolates. The 6H QTL from 'Pompadour' contributed resistance to isolates 97NB1, 95NB100 and NB81, whereas 6H QTL from 'Stirling' contributed resistance to isolates NB50 and NB52B. The 3H QTL from 'Pompadour' contributed resistance to NB50 and NB52B. Significant epistatic interactions were detected between QTL on 3H and 6H. These resistance QTL are a useful resource and identifying closely linked SSR markers with allelic combinations will facilitate in marker-assisted selection to develop NTNB resistant breeding lines.