961 resultados para Cardiac output


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: This review will discuss the rationale and clinical utility of percutaneous left ventricular assist devices in the management of patients with cardiogenic shock. RECENT FINDINGS: Left ventricular assist devices maintain partial or total circulatory support in case of severe left ventricular failure. Currently, two percutaneous left ventricular assist devices are available for clinical use: the TandemHeart and the Impella Recover LP system. Compared with the intraaortic balloon pump, the TandemHeart has been shown to significantly reduce preload and to augment cardiac output. In a randomized comparison between the TandemHeart and intraaortic balloon pump support in patients with cardiogenic shock, the improved cardiac index afforded by the left ventricular assist device resulted in a more rapid decrease in serum lactate and improved renal function. There were, however, no significant differences with respect to 30-day mortality, and complications including limb ischemia and severe bleeding were more frequent with left ventricular assist devices than intraaortic balloon pump support. SUMMARY: The advent of percutaneous left ventricular assist devices constitutes an important advance in the management of patients with severe cardiogenic shock and may serve as bridge to recovery or heart transplantation in carefully selected patients. While improvement of hemodynamic parameters appears promising, it remains to be determined whether this benefit translates into improved clinical outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Intermittent (IT) and continuous (CT) thermodilution and esophageal Doppler (ED), are all used for hemodynamic monitoring. The aim of this study was to test the agreement between these methods during endotoxin (ET) and dobutamine infusion. METHODS: Twenty-two pigs (39 +/- 1.8 kg body weight) were randomized to general anesthesia and either continuous ET (n = 9) or placebo (PL, n = 13) infusion. After 18 hours of ET or PL infusion, the animals were further randomized to receive dobutamine (n = 3 in ET, n = 5 in PL) or PL. A set of measurements using the three methods were obtained every hour, and the relative blood flow changes between two subsequent measurements were calculated. RESULTS: Bias or limits of agreement for flows were 0.73 L/min or 1.80 L/min for IT and CT, -0.33 L/min or 4.29 L/min for IT and ED, and -1.06 or 3.94 for CT and ED (n = 515, each). For flow changes they were 1% or 44%, 2% or 59%, and 3% or 45%, respectively. Bias and limits of agreement did not differ in ET- and PL-treated animals or in animals with or without dobutamine. Despite significant correlation between any two methods, the respective correlation coefficients (r) were small (IT vs. CT: 0.452; IT vs. ED: 0.042; CT vs. ED: 0.069; all p < 0.001). The same directional changes were measured by any two methods in 49%, 40%, and 50%. When IT flows >5 L/min were compared with IT flows cardiac output agree only to a moderate level, and agreement between the respective relative blood flow changes is even worse. ED has poor agreement with both thermodilution methods, especially when cardiac output is >5 L/min.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The postoperative assessment of volume status is not straightforward because of concomitant changes in intravascular volume and vascular tone. Hypovolemia and blood flow redistribution may compromise the perfusion of the intraabdominal organs. We investigated the effects of a volume challenge in different intra- and extraabdominal vascular beds. METHODS: Twelve pigs were studied 6 h after major intraabdominal surgery under general anesthesia when clinically normovolemic. Volume challenges consisted of 200 mL rapidly infused 6% hydroxyethyl starch. Systemic (continuous thermodilution) and regional (ultrasound Doppler) flows in carotid, renal, celiac trunk, hepatic, and superior mesenteric arteries and the portal vein were continuously measured. The acute and sustained effects of the challenge were compared with baseline. RESULTS: Volume challenge produced a sustained increase of 22% +/- 15% in cardiac output (P < 0.001). Blood flow increased by 10% +/- 9% in the renal artery, by 22% +/- 15% in the carotid artery, by 26% +/- 15% in the superior mesenteric artery, and by 31% +/- 20% in the portal vein (all P < 0.001). Blood flow increases in the celiac trunk (8% +/- 13%) and the hepatic artery (7% +/- 19%) were not significant. Increases in regional blood flow occurred early and were sustained. Mean arterial and central venous blood pressures increased early and decreased later (all P < 0.05). CONCLUSIONS: A volume challenge in clinically euvolemic postoperative animals was associated with a sustained increase in blood flow to all vascular beds, although the increase in the celiac trunk and the hepatic artery was very modest and did not reach statistical significance. Whether improved postoperative organ perfusion is accompanied by a lower complication rate should be evaluated in further studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiogenic shock complicates up to 7% of ST-segment elevation myocardial infarctions and 2.5% of non-ST-segment elevation myocardial infarctions, with an associated mortality of 50% to 70%. Primary cardiac pump failure is followed by secondary vital organ hypoperfusion and subsequent activation of various cascade pathways, resulting in a downward spiral leading to multiple organ failure and, ultimately, death. Immediate restoration of cardiac output by means of percutaneous ventricular assist devices restores hemodynamic -stability and is an important advance in the management of patients with severe left ventricular dysfunction and cardiogenic shock. This article reviews available evidence supporting the use of percutaneous ventricular assist devices in patients suffering from cardiogenic shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Exertional oscillatory ventilation (EOV) in heart failure may potentiate the negative effects of low cardiac output and high ventilation on exercise performance. We hypothesized that the presence of EOV might, per se, influence exercise capacity as evaluated by maximal cardiopulmonary exercise test. METHODS AND RESULTS: We identified 78 severe chronic heart failure patient pairs with and without EOV. Patients were matched for sex, age and peak oxygen consumption (VO2). Patients with EOV showed, for the same peak VO2, a lower workload (WL) at peak (DeltaWatts=5.8+/-23.0, P=0.027), a less efficient ventilation (higher VE/VCO2 slope: 38.0+/-8.3 vs. 32.8+/-6.3, P<0.001), lower peak exercise tidal volume (1.49+/-0.36 L vs. 1.61+/-0.46 L, P=0.015) and higher peak respiratory rate (34+/-7/min vs. 31+/-6/min, P=0.002). In 33 patients, EOV disappeared during exercise, whereas in 45 patients EOV persisted. Fifty percent of EOV disappearing patients had an increase in the VO2/WL relationship after EOV regression, consistent with a more efficient oxygen delivery to muscles. No cardiopulmonary exercise test parameter was associated with the different behaviour of VO2/WL. CONCLUSION: The presence of EOV negatively influences exercise performance of chronic heart failure patients likely because of an increased cost of breathing. EOV disappearance during exercise is associated with a more efficient oxygen delivery in several cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Perioperative hypovolemia arises frequently and contributes to intestinal hypoperfusion and subsequent postoperative complications. Goal-directed fluid therapy might reduce these complications. The aim of this study was to compare the effects of goal-directed administration of crystalloids and colloids on the distribution of systemic, hepatosplanchnic, and microcirculatory (small intestine) blood flow after major abdominal surgery in a clinically relevant pig model. METHODS: Twenty-seven pigs were anesthetized and mechanically ventilated and underwent open laparotomy. They were randomly assigned to one of three treatment groups: the restricted Ringer lactate (R-RL) group (n = 9) received 3 mL/kg per hour of RL, the goal-directed RL (GD-RL) group (n = 9) received 3 mL/kg per hour of RL and intermittent boluses of 250 mL of RL, and the goal-directed colloid (GD-C) group (n = 9) received 3 mL/kg per hour of RL and boluses of 250 mL of 6% hydroxyethyl starch (130/0.4). The latter two groups received a bolus infusion when mixed venous oxygen saturation was below 60% ('lockout' time of 30 minutes). Regional blood flow was measured in the superior mesenteric artery and the celiac trunk. In the small bowel, microcirculatory blood flow was measured using laser Doppler flowmetry. Intestinal tissue oxygen tension was measured with intramural Clark-type electrodes. RESULTS: After 4 hours of treatment, arterial blood pressure, cardiac output, mesenteric artery flow, and mixed oxygen saturation were significantly higher in the GD-C and GD-RL groups than in the R-RL group. Microcirculatory flow in the intestinal mucosa increased by 50% in the GD-C group but remained unchanged in the other two groups. Likewise, tissue oxygen tension in the intestine increased by 30% in the GD-C group but remained unchanged in the GD-RL group and decreased by 18% in the R-RL group. Mesenteric venous glucose concentrations were higher and lactate levels were lower in the GD-C group compared with the two crystalloid groups. CONCLUSIONS: Goal-directed colloid administration markedly increased microcirculatory blood flow in the small intestine and intestinal tissue oxygen tension after abdominal surgery. In contrast, goal-directed crystalloid and restricted crystalloid administrations had no such effects. Additionally, mesenteric venous glucose and lactate concentrations suggest that intestinal cellular substrate levels were higher in the colloid-treated than in the crystalloid-treated animals. These results support the notion that perioperative goal-directed therapy with colloids might be beneficial during major abdominal surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: During orthopedic surgery, embolization of bone marrow fat can lead to potentially fatal, intra-operative cardiovascular deterioration. Vasoactive mediators may also be released from the bone marrow and contribute to these changes. Increased plasma levels of endothelin-1 (ET-1) have been observed after pulmonary air and thrombo-embolism. The role of ET-1 in the development of acute cardiovascular deterioration as a result of bone marrow fat embolization during vertebroplasty was therefore investigated. METHODS: Bone cement was injected into three lumbar vertebrae of six sheep in order to force bone marrow fat into the circulation. Invasive blood pressures and heart rate were recorded continuously until 60 min after the last injection. Cardiac output, arterial and mixed venous blood gas parameters and plasma ET-1 concentrations were measured at selected time points. Post-mortem, lung biopsies were taken for analysis of intravascular fat. RESULTS: Cement injections resulted in a sudden (within 1 min) and severe increase in pulmonary arterial pressure (>100%). Plasma concentrations of ET-1 started to increase after the second injection, but no significant changes were observed. Intravascular fat and bone marrow cells were present in all lung lobes. CONCLUSION: Cement injections into vertebral bodies elicited fat embolism resulting in subsequent cardiovascular changes that were characterized by an increase in pulmonary arterial pressure. Cardiovascular complications as a result of bone marrow fat embolism should thus be considered in patients undergoing vertebroplasty. No significant changes in ET-1 plasma values were observed. Thus, ET-1 did not contribute to the acute cardiovascular changes after fat embolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Exercise capacity after heart transplantation (HTx) remains limited despite normal left ventricular systolic function of the allograft. Various clinical and haemodynamic parameters are predictive of exercise capacity following HTx. However, the predictive significance of chronotropic competence has not been demonstrated unequivocally despite its immediate relevance for cardiac output. AIMS: This study assesses the predictive value of various clinical and haemodynamic parameters for exercise capacity in HTx recipients with complete chronotropic competence evolving within the first 6 postoperative months. METHODS: 51 patients were enrolled in this exercise study. Patients were included when at least >6 months after HTx and without negative chronotropic medication or factors limiting exercise capacity such as significant transplant vasculopathy or allograft rejection. Clinical parameters were obtained by chart review, haemodynamic parameters from current cardiac catheterisation, and exercise capacity was assessed by treadmill stress testing. A stepwise multiple regression model analysed the proportion of the variance explained by the predictive parameters. RESULTS: The mean age of these 51 HTx recipients was 55.4 +/- 13.2 yrs on inclusion, 42 pts were male and the mean time interval after cardiac transplantation was 5.1 +/- 2.8 yrs. Five independent predictors explained 47.5% of the variance observed for peak exercise capacity (adjusted R2 = 0.475). In detail, heart rate response explained 31.6%, male gender 5.2%, age 4.1%, pulmonary vascular resistance 3.7%, and body-mass index 2.9%. CONCLUSION: Heart rate response is one of the most important predictors of exercise capacity in HTx recipients with complete chronotropic competence and without relevant transplant vasculopathy or acute allograft rejection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Volume resuscitation is one of the primary therapeutic goals in hemorrhagic shock, but data on microcirculatory effects of different colloidal fluid resuscitation regimen are sparse. We investigated sublingual mucosal microcirculatory parameters during hemorrhage and after fluid resuscitation with gelatin, hydroxyethyl starch, or hypertonic saline and hydroxyethyl starch in pigs. METHODS: To induce hemorrhagic shock, 60% of calculated blood volume was withdrawn. Microvascular blood flow was assessed by laser Doppler velocimetry. Microcirculatory hemoglobin oxygen saturation was measured with a tissue reflectance spectrophotometry, and side darkfield imaging was used to visualize the microcirculation and to quantify the flow quality. Systemic hemodynamic variables, systemic acid base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline, after hemorrhage, and after fluid resuscitation with a fixed volume regimen. RESULTS: Systemic hemodynamic parameters returned or even exceeded to baseline values in all three groups after fluid resuscitation, but showed significantly higher filling pressures and cardiac output values in animals treated with isotonic colloids. Microcirculatory parameters determined in gelatin and hydroxyethyl starch resuscitated animals, and almost all parameters except microvascular hemoglobin oxygen saturation in animals treated with hypertonic saline and hydroxyethyl starch, were restored after treatment. DISCUSSION: Hemorrhaged pigs can be hemodynamically stabilized with either isotonic or hypertonic colloidal fluids. The main finding is an adequate restoration of sublingual microcirculatory blood flow and flow quality in all three study groups, but only gelatin and hydroxyethyl starch improved microvascular hemoglobin oxygen saturation, indicating some inadequate oxygen supply/demand ratio maybe due to a better restoration of systemic hemodynamics in isotonic colloidal resuscitated animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction. METHODS AND RESULTS This multicenter registry retrospectively included 120 patients (63.6±12.2 years; 81.7% male) with cardiogenic shock from acute myocardial infarction receiving temporary circulatory support with the Impella-2.5-percutaneous left-ventricular assist device. The primary end point evaluated mortality at 30 days. The secondary end point analyzed the change of plasma lactate after the institution of hemodynamic support, and the rate of early major adverse cardiac and cerebrovascular events as well as long-term survival. Thirty-day mortality was 64.2% in the study population. After Impella-2.5-percutaneous left-ventricular assist device implantation, lactate levels decreased from 5.8±5.0 mmol/L to 4.7±5.4 mmol/L (P=0.28) and 2.5±2.6 mmol/L (P=0.023) at 24 and 48 hours, respectively. Early major adverse cardiac and cerebrovascular events were reported in 18 (15%) patients. Major bleeding at the vascular access site, hemolysis, and pericardial tamponade occurred in 34 (28.6%), 9 (7.5%), and 2 (1.7%) patients, respectively. The parameters of age >65 and lactate level >3.8 mmol/L at admission were identified as predictors of 30-day mortality. After 317±526 days of follow-up, survival was 28.3%. CONCLUSIONS In patients with acute cardiogenic shock from acute myocardial infarction, Impella 2.5-treatment is feasible and results in a reduction of lactate levels, suggesting improved organ perfusion. However, 30-day mortality remains high in these patients. This likely reflects the last-resort character of Impella-2.5-application in selected patients with a poor hemodynamic profile and a greater imminent risk of death. Carefully conducted randomized controlled trials are necessary to evaluate the efficacy of Impella-2.5-support in this high-risk patient group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. Conversely, mice with cardiomyocyte-restricted ANG2 overexpression failed to develop hemodynamic alterations. Interestingly, the hemodynamic alterations associated with endothelial-specific overexpression of ANG2 and the loss of capillary-associated pericytes were reversed by intravenous injections of adeno-associated viruses (AAVs) transducing cDNA for angiopoietin 1, a TIE2 ligand that antagonizes ANG2, or AAVs encoding PDGFB, a chemoattractant for pericytes. To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/TIE2 interaction during sepsis is a potential therapeutic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to [Formula: see text]. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting.