917 resultados para Carcinoma ductal in situ
Resumo:
The rhythm of division of 9 species belonging to different groups of algae were analysed in situ and in the laboratory. The research which developed in different environmental conditions attempted to establish the capacity for multiplication and assimilation of chlorophyll on the part of the algae under study with a view to placing them in a culture. The results obtained showed that the green multicellular algae (eg. Ulothrix) and the blue algae (eg. Lyngbya, Oscillatoria) are able to produce an appreciable quantity of dry matter, just as the unicellular algae. At the same time it arises that amongst the numerous factors of the environment, temperature plays one of the most important roles in the process of multiplication.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
El propileno es un monómero muy versátil y es la materia prima para una amplia gama de polímeros, intermedios y productos químicos. Esta versatilidad se debe a su estructura química: al igual que el etileno, el propileno contiene un doble enlace carbono - carbono, pero a diferencia de éste, el propileno contiene también un grupo metil - alílico (un grupo metilo adyacente a un doble enlace), otorgando a los químicos, diseñadores catalíticos e ingenieros dos distintas alternativas para llevar a cabo las trasformaciones químicas, por lo que son más numerosos los derivados del propilen o que del etileno (Plotkin, 2005).
Resumo:
Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.
The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.
The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.
The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.
Resumo:
Topography of a granite surface has an effect on the vertical positioning of a wafer stage in a lithographic tool, when the wafer stage moves on the granite. The inaccurate measurement of the topography results in a bad leveling and focusing performance. In this paper, an in situ method to measure the topography of a granite surface with high accuracy is present. In this method, a high-order polynomial is set up to express the topography of the granite surface. Two double-frequency laser interferometers are used to measure the tilts of the wafer stage in the X- and Y-directions. From the sampling tilts information, the coefficients of the high-order polynomial can be obtained by a special algorithm. Experiment results shows that the measurement reproducibility of the method is better than 10 nm. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, ZrO2 and WO3 were used as the raw materials to prepare ZrO2/ZrW2O8 composites by in situ reaction method and the thermal expansion property of the composites was studied. This novel method included a heating step up to 1473 K for 24 h, which combines the synthesizing and sintering of ZrW2O8. The result indicates that ZrO2/ZrW2O8 composite shows near-zero thermal expansion when the weight ratio of ZrO2 and WO3 is 2.5:1. Compared with composites prepared previously by non-reactive sintering of ZrO2 and ZrW2O8, the composites show higher relative density and lower porosity.