947 resultados para Cancer systems biology
Resumo:
Networks exhibiting accelerating growth have total link numbers growing faster than linearly with network size and either reach a limit or exhibit graduated transitions from nonstationary-to-stationary statistics and from random to scale-free to regular statistics as the network size grows. However, if for any reason the network cannot tolerate such gross structural changes then accelerating networks are constrained to have sizes below some critical value. This is of interest as the regulatory gene networks of single-celled prokaryotes are characterized by an accelerating quadratic growth and are size constrained to be less than about 10,000 genes encoded in DNA sequence of less than about 10 megabases. This paper presents a probabilistic accelerating network model for prokaryotic gene regulation which closely matches observed statistics by employing two classes of network nodes (regulatory and non-regulatory) and directed links whose inbound heads are exponentially distributed over all nodes and whose outbound tails are preferentially attached to regulatory nodes and described by a scale-free distribution. This model explains the observed quadratic growth in regulator number with gene number and predicts an upper prokaryote size limit closely approximating the observed value. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Over 90% of all adults human cancers are of epithelial origin comprising mainly of skin and aero-digestive tract cancers. A significant proportion of our discipline's workload consists of management of these cancers. This review article is to provide clinicians with a summary of the current research findings in invasion and metastasis of epithelial cancers and the translation of some of this information to clinical use particularly related to skin and head and neck cancers (HNSCC). Metastasis is the leading cause of death in cancer patients. Although surgical resection of isolated metastases is beneficial for some patients, the overall efficacy of surgery, chemotherapy or radiotherapy is limited. Clearly, with today's advances in surgery a majority of these primary cancers are resectable and a cure attainable if surgeons could control or inhibit metastasis.
Resumo:
Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
Introduction - In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. Methods - Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. Findings - We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. Conclusions - We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/.
Resumo:
To carry out their specific roles in the cell, genes and gene products often work together in groups, forming many relationships among themselves and with other molecules. Such relationships include physical protein-protein interaction relationships, regulatory relationships, metabolic relationships, genetic relationships, and much more. With advances in science and technology, some high throughput technologies have been developed to simultaneously detect tens of thousands of pairwise protein-protein interactions and protein-DNA interactions. However, the data generated by high throughput methods are prone to noise. Furthermore, the technology itself has its limitations, and cannot detect all kinds of relationships between genes and their products. Thus there is a pressing need to investigate all kinds of relationships and their roles in a living system using bioinformatic approaches, and is a central challenge in Computational Biology and Systems Biology. This dissertation focuses on exploring relationships between genes and gene products using bioinformatic approaches. Specifically, we consider problems related to regulatory relationships, protein-protein interactions, and semantic relationships between genes. A regulatory element is an important pattern or "signal", often located in the promoter of a gene, which is used in the process of turning a gene "on" or "off". Predicting regulatory elements is a key step in exploring the regulatory relationships between genes and gene products. In this dissertation, we consider the problem of improving the prediction of regulatory elements by using comparative genomics data. With regard to protein-protein interactions, we have developed bioinformatics techniques to estimate support for the data on these interactions. While protein-protein interactions and regulatory relationships can be detected by high throughput biological techniques, there is another type of relationship called semantic relationship that cannot be detected by a single technique, but can be inferred using multiple sources of biological data. The contributions of this thesis involved the development and application of a set of bioinformatic approaches that address the challenges mentioned above. These included (i) an EM-based algorithm that improves the prediction of regulatory elements using comparative genomics data, (ii) an approach for estimating the support of protein-protein interaction data, with application to functional annotation of genes, (iii) a novel method for inferring functional network of genes, and (iv) techniques for clustering genes using multi-source data.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Resumo:
Acompanha: Sequência didática: trabalhando o conceito e as características dos fungos: pesquisa de campo para identificação dos fungos
Resumo:
The primary goal of systems biology is to integrate complex omics data, and data obtained from traditional experimental studies in order to provide a holistic understanding of organismal function. One way of achieving this aim is to generate genome-scale metabolic models (GEMs), which contain information on all metabolites, enzyme-coding genes, and biochemical reactions in a biological system. Drosophila melanogaster GEM has not been reconstructed to date. Constraint-free genome-wide metabolic model of the fruit fly has been reconstructed in our lab, identifying gaps, where no enzyme was identified and metabolites were either only produced or consume. The main focus of the work presented in this thesis was to develop a pipeline for efficient gap filling using metabolomics approaches combined with standard reverse genetics methods, using 5-hydroxyisourate hydrolase (5-HIUH) as an example. 5-HIUH plays a role in urate degradation pathway. Inability to degrade urate can lead to inborn errors of metabolism (IEMs) in humans, including hyperuricemia. Based on sequence analysis Drosophila CG30016 gene was hypothesised to encode 5- HIUH. CG30016 knockout flies were examined to identify Malpighian tubules phenotype, and shortened lifespan might reflect kidney disorders in hyperuricemia in humans. Moreover, LC-MS analysis of mutant tubules revealed that CG30016 is involved in purine metabolism, and specifically urate degradation pathway. However, the exact role of the gene has not been identified, and the complete method for gap filling has not been developed. Nevertheless, thanks to the work presented here, we are a step closer towards the development of a gap-filling pipeline in Drosophila melanogaster GEM. Importantly, the areas that require further optimisation were identified and are the focus of future research. Moreover, LC-MS analysis confirmed that tubules rather than the whole fly were more suitable for metabolomics analysis of purine metabolism. Previously, Dow/Davies lab has generated the most complete tissue-specific transcriptomic atlas for Drosophila – FlyAtlas.org, which provides data on gene expression across multiple tissues of adult fly and larva. FlyAtlas revealed that transcripts of many genes are enriched in specific Drosophila tissues, and that it is possible to deduce the functions of individual tissues within the fly. Based on FlyAtlas data, it has become clear that the fly (like other metazoan species) must be considered as a set of tissues, each 2 with its own distinct transcriptional and functional profile. Moreover, it revealed that for about 30% of the genome, reverse genetic methods (i.e. mutation in an unknown gene followed by observation of phenotype) are only useful if specific tissues are investigated. Based on the FlyAtlas findings, we aimed to build a primary tissue-specific metabolome of the fruit fly, in order to establish whether different Drosophila tissues have different metabolomes and if they correspond to tissue-specific transcriptome of the fruit fly (FlyAtlas.org). Different fly tissues have been dissected and their metabolome elucidated using LC-MS. The results confirmed that tissue metabolomes differ significantly from each other and from the whole fly, and that some of these differences can be correlated to the tissue function. The results illustrate the need to study individual tissues as well as the whole organism. It is clear that some metabolites that play an important role in a given tissue might not be detected in the whole fly sample because their abundance is much lower in comparison to other metabolites present in all tissues, which prevent the detection of the tissue-specific compound.