536 resultados para CEPHALIC SECRETIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions are, for the most part, complex peptidomes. While many peptide components have been biologically- and structurally-characterised into discrete "families", some of which are analogues of endogenous vertebrate regulatory peptides, a substantial number are of unique structure and unknown function. Among the components of these secretory peptidomes is an array of protease inhibitors. Inhibitors of trypsin are of widespread occurrence in different taxa and are representative of many established structural classes, including Kunitz, Kazal and Bowman-Birk. However, few protease inhibitors with activity against other specific proteases have been described from this source. Here we report for the first time, the isolation and structural characterisation of an inhibitor of chymotrypsin of Kunitz-type from the skin secretion of the African hyperoliid frog, Kassina senegalensis. To this end, we employed a functional peptidomic approach. This scheme involves fractionation of the peptidome, functional end-point screening, structural characterisation of resultant actives followed by molecular cloning of biosynthetic precursor-encoding cDNA(s). The novel mature and active polypeptide identified consisted of 62 amino acid residues (average molecular mass 6776.24 Da), of which 6 were positionally-conserved cysteines. The P(1) position within the active site was occupied by a phenylalanyl residue. Bioinformatic analysis of the sequence using BLAST, revealed a structural similarity to Kunitz-type chymotrypsin inhibitors from other organisms, ranging from silkworms to snakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidermis of the land planarian Arthioposthia triangulata was examined by scanning and transmission electron microscopy. This investigation revealed that the flatworm was covered entirely with cilia and was especially densely populated on the ventral surface. In all regions the epidermis consisted of a one-layered columnar epithelium resting on a prominent basement membrane, but lacking a terminal web. Various secretions were found in the epidermis together with epidermal rhabdoids. Below the basement membrane other secretory material was visible and this included the cytoplasmic lamellated granules and adenal rhabdites. The basement membrane consisted of fibrils with a beaded appearance and these were arranged parallel to the epidermal layer but did not display cross-banding. The secretory cells above and below the basement membrane were compared and their products characterized on the basis of shape, size and location. Their possible function is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidermis of the predatory terrestrial flatworm. Artioposthia triangulata has been examined by transmission electron microscopy for the presence of rhabdiform secretions. Two types of secretion are present: epidermal rhabdoids, produced by a special type of epidermal cell and true adenal rhabdites produced by gland cells beneath the epidermis. The epidermal rhabdoids are formed from Golgi-derived vesicles, which Fuse together to form the developing rhabdoid. Within the latter is a filamentous network on which granular material is deposited and coalesces to form a rod-shaped inclusion. The rhabdoids accumulate in the apical region of the cell and release their contents from the apical surface. The adenal rhabdites are formed by Golgi-derived vesicles. which become more elongated and their contents more electron-dense as they mature. The vesicles Fuse together to form the primordial rhabdite, which continues to lengthen with the addition of further vesicles. The neck of the rhabdite-forming cell passes between the muscle layers and through the basement membrane to open into the base of the epidermal cell. The rhabdites move from the cell body through the neck into the cytoplasm of the epidermal cell and make their way to the apical surface where they are released to the exterior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electron microscopical examination has been made of the fine structure and disposition of pancreatic polypeptide immunoreactive cells associated with the egg-forming apparatus in Diclidophora merlangi. The cell bodies are positioned in the parenchyma surrounding the ootype and taper to axon-like processes that extend to the ootype wall. The terminal regions of these processes branch and anastomose and, in places, the swollen endings or varicosities form synaptic appositions with the muscle fibres in the ootype wall. The cells are characterized by an extensive GER-Golgi system that is involved in the assembly and packaging of dense-cored vesicles. The vesicles accumulate in the axons and terminal varicosities, and their contents were found to be immunoreactive with antisera raised to the C-terminal hexapeptide amide of pancreatic polypeptide. It is concluded that the cells are neurosecretory in appearance and that, functionally, their secretions may serve to regulate ootype motility and thereby help co-ordinate egg production in the worm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To infect their mammalian hosts, Fasciola hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum, and penetrate the liver. After migrating through and feeding on the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and produce eggs. Here we integrated a transcriptomics and proteomics approach to profile Fasciola secretory proteins that are involved in host-pathogen interactions and to correlate changes in their expression with the migration of the parasite. Prediction of F. hepatica secretory proteins from 14,031 expressed sequence tags (ESTs) available from the Wellcome Trust Sanger Centre using the semiautomated EST2Secretome pipeline showed that the major components of adult parasite secretions are proteolytic enzymes including cathepsin L, cathepsin B, and asparaginyl endopeptidase cysteine proteases as well as novel trypsin-like serine proteases and carboxypeptidases. Proteomics analysis of proteins secreted by infective larvae, immature flukes, and adult F. hepatica showed that these proteases are developmentally regulated and correlate with the passage of the parasite through host tissues and its encounters with different host macromolecules. Proteases such as FhCL3 and cathepsin B have specific functions in larvae activation and intestinal wall penetration, whereas FhCL1, FhCL2, and FhCL5 are required for liver penetration and tissue and blood feeding. Besides proteases, the parasites secrete an array of antioxidants that are also highly regulated according to their migration through host tissues. However, whereas the proteases of F. hepatica are secreted into the parasite gut via a classical endoplasmic reticulum/Golgi pathway, we speculate that the antioxidants, which all lack a signal sequence, are released via a non-classical trans-tegumental pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The defensive skin secretions of amphibians are a rich resource for the discovery of novel, bioactive peptides. Here we report the identification of a novel vascular smooth muscle-relaxing peptide, named vasorelaxin, from the skin secretion of the Chinese piebald odorous frog, Odorrana schmackeri. Vasorelaxin consists of 20 amino acid residues, SRVVKCSGFRPGSPDSREFC, with a disulfide-bridge between Cys-6 and Cys-20. The structure of its biosynthetic precursor was deduced from cloned skin cDNA and consists of 67 amino acid residues encoding a single copy of vasorelaxin (vasorelaxin, accession number: HE860494). Synthetic vasorelaxin caused a profound relaxation of rat arterial smooth muscle with an EC50 of 6.76 nM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunogenicity of proteins encapsulated in poly(DL-lactide-co-glycolide) (PLG) microspheres has not been investigated to any extent in large animal models. In this study, IgG and IgA responses to ovalbumin (OVA), encapsulated in microspheres was investigated following intranasal inoculation into calves. Scanning electron microscopy and flow cytometric analysis demonstrated a uniform microsphere population with a diameter of <2.5 micrometers. Ovalbumin was released steadily from particles stored in PBS almost in a linear fashion, and after 4 weeks many particles showed cracks and fissures in their surface structure. Following intranasal inoculation of calves with different doses of encapsulated antigen, mean levels of ovalbumin-specific IgA were observed to increase steadily but significant differences in IgA levels (from the pre-inoculation level) were only observed following a second intranasal inoculation. With 0.5 and 1.0mg doses of antigen, ovalbumin-specific IgG was also detected in serum. Ovalbumin-specific IgA persisted in nasal secretions for a considerable period of time and were still detectable in four out of seven animals, 6 months after inoculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions contain a plethora of pharmacologically-active substances and represent established sources of bioactive peptides, including tachykinins. Tachykinins are one of the most widely-studied peptide families in animals and are found in neuroendocrine tissues from the lowest vertebrates to mammals. They are characterized by the presence of a highly-conserved C-terminal pentapeptide amide sequence motif (-FXGLM-amide) that also constitutes the bioactive core of the peptide. Amidation of the C-terminal methioninyl residue appears to be mandatory in the expression of biological activity. Here, we describe the isolation, characterization and molecular cloning of a novel tachykinin named ranachensinin, from the skin secretion of the Chinese brown frog, Rana chensinensis. This peptide, DDTSDRSN QFIGLM-amide, contains the classical C-terminal pentapeptide amide motif in its primary structure and an Ile (I) residue in the variable X position. A synthetic replicate of ranachensinin, synthesized by solid-phase Fmoc chemistry, was found to contract the smooth muscle of rat urinary bladder with an EC50 of 20.46 nM. However, in contrast, it was found to be of low potency in contraction of rat ileum smooth muscle with an EC50 of 2.98 µM. These data illustrate that amphibian skin secretions continue to provide novel bioactive peptides with selective effects on functional targets in mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this project was to develop and pharmacologically characterize an experimental dog model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Solubilized compound 48/80 (0.3-3.0%) was administered intranasally to thiopental anesthetized beagle dogs to elicit nasal congestion via localized mast cell degranulation. Compound 48/80-induced effects on parameters of nasal patency were studied in vehicle-treated animals, as well as in the same animals pretreated 2 hours earlier with oral d-pseudoephedrine or chlorpheniramine. Local mast cell degranulation caused a close-related decrease in nasal cavity volume and minimal cross-sectional area (Amin) together with a highly variable increase in nasal secretions. Maximal responses were seen at 90-120 minutes after 48/80 administration. Oral administration of the adrenergic agonist, d-pseudoephedrine (3.0 mg/kg), significantly antagonized all of the nasal effects of compound 48/80 (3.0%). In contrast, oral administration of the histamine H1 receptor antagonist chlorpheniramine (10 mg/kg) appeared to reduce the increased nasal secretions but was without effect on the compound 48/ 80-induced nasal congestion (i.e., volume and Amin). These results show the effectiveness of using acoustic rhinometry in this anesthetized dog model. The observations that compound 48/80-induced nasal congestion was prevented by d-pseudoephedrine pretreatment, but not by chlorpheniramine, suggest that this noninvasive model system may provide an effective tool with which to study the actions of decongestant drugs in preclinical investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 µM against Gram-negative Escherichia coli, 4.3 µM against Gram-positive Staphylococcus aureus and 4–9 µM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most widespread and abundant families of pharmacologically active peptides in amphibian defensive skin secretions is the bradykinins and related peptides. Despite retaining certain primary structural attributes that assign them to this peptide family, bradykinins and related peptides are unique among amphibian skin peptides in that they exhibit a wide range of primary structural variations, post-translational modifications and/or N-terminal or C-terminal extensions. Initially it was believed that their high degree of primary structural heterogeneity was reflective of random gene mutations within species, but latterly, there is an increasing body of evidence that the spectrum of structural modifications found within this peptide family is reflective of the vertebrate predator spectrum of individual species. Here we report the discovery of ornithokinin (avian bradykinin – Thr6, Leu8-bradykinin) in the skin secretion of the Chinese bamboo odorous frog, Odorrana versabilis. Molecular cloning of its biosynthetic precursor-encoding cDNA from a skin secretion-derived cDNA library revealed a deduced open-reading frame of 86 amino acid residues, encoding a single copy of ornithokinin towards its C-terminus. The domain architecture of this ornithokinin precursor protein was consistent with that of a typical amphibian skin peptide and quite different to that of the ornithokininogen from chicken plasma. Ornithokinin was reported to induce hypotension in the chicken and to contract the chicken oviduct but to have no obvious effect on the rat uterus. However, in this study, synthetic ornithokinin was found to contract the rat ileum (EC50 = 539 nM) and to increase contraction frequency in the rat uterus (EC50 = 1.87 μM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first amphibian skin antimicrobial peptide (AMP) to be identified was named bombinin, reflecting its origin from the skin of the European yellow-bellied toad (Bombina variegata). Bombinins and their related peptides, the bombinin Hs, were subsequently reported from other bombinid toads. Molecular cloning of bombinin-encoding cDNAs from skin found that bombinins and bombinin Hs were coencoded on the same precursor proteins. Here, we report the molecular cloning of two novel cDNAs from a skin secretion-derived cDNA library of B. variegata whose open-reading frames each encode a novel bombinin (GIGGALLNVGKVALKGLAKGLAEHFANamide) and a C-terminally located single copy of a novel nonapeptide (FLGLLGGLLamide or FLGLIGSLLamide). These novel nonapeptides were named feleucin-BV1 and feleucin-BV2, respectively. The novel bombinin exhibited 89% identity to homologues from the toads, B. microdeladigitora and B. maxima. The feleucins exhibited no identity with any amphibian AMP archived in databases. Synthetic feleucins exhibited a weak activity against Staphylococcus aureus (128–256 mg/L) but feleucin-BV1 exhibited a synergistic action with the novel bombinin. The present report clearly demonstrates that the skin secretions of bombinid toads continue to represent a source of peptides of novel structure that could provide templates for the design of therapeutics.