888 resultados para CARDIAC OUTPATIENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medical treatment of chronic heart failure has undergone a dramatic transition in the past decade. Short-term approaches for altering hemodynamics have given way to long-term, reparative strategies, including beta-adrenergic receptor (betaAR) blockade. This was once viewed as counterintuitive, because acute administration causes myocardial depression. Cardiac myocytes from failing hearts show changes in betaAR signaling and excitation-contraction coupling that can impair cardiac contractility, but the role of these abnormalities in the progression of heart failure is controversial. We therefore tested the impact of different manipulations that increase contractility on the progression of cardiac dysfunction in a mouse model of hypertrophic cardiomyopathy. High-level overexpression of the beta(2)AR caused rapidly progressive cardiac failure in this model. In contrast, phospholamban ablation prevented systolic dysfunction and exercise intolerance, but not hypertrophy, in hypertrophic cardiomyopathy mice. Cardiac expression of a peptide inhibitor of the betaAR kinase 1 not only prevented systolic dysfunction and exercise intolerance but also decreased cardiac remodeling and hypertrophic gene expression. These three manipulations of cardiac contractility had distinct effects on disease progression, suggesting that selective modulation of particular aspects of betaAR signaling or excitation-contraction coupling can provide therapeutic benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined estimated incidence of and risk factors for community-associated Clostridium difficile infection (CA-CDI) among patients treated at 6 North Carolina hospitals. CA-CDI case-patients were defined as adults (>18 years of age) with a positive stool test result for C. difficile toxin and no hospitalization within the prior 8 weeks. CA-CDI incidence was 21 and 46 per 100,000 person-years in Veterans Affairs (VA) outpatients and Durham County populations, respectively. VA case-patients were more likely than controls to have received antimicrobial drugs (adjusted odds ratio [aOR] 17.8, 95% confidence interval [CI] 6.6-48] and to have had a recent outpatient visit (aOR 5.1, 95% CI 1.5-17.9). County case-patients were more likely than controls to have received antimicrobial drugs (aOR 9.1, 95% CI 2.9-28.9), to have gastroesophageal reflux disease (aOR 11.2, 95% CI 1.9-64.2), and to have cardiac failure (aOR 3.8, 95% CI 1.1-13.7). Risk factors for CA-CDI overlap with those for healthcare-associated infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic human heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased levels of betaAR kinase 1 (betaARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of betaARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of betaARK1 (betaARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca(2+)-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 +/- 1 weeks). In contrast, CSQ/betaARKct mice exhibited a significant increase in mean survival age (15 +/- 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/betaARKct, left ventricular end diastolic dimension 5.60 +/- 0.17 mm vs. 4.19 +/- 0.09 mm, P < 0.005; % fractional shortening, 15 +/- 2 vs. 36 +/- 2, P < 0.005). The enhancement of the survival rate in CSQ/betaARKct mice was substantially potentiated by chronic treatment with the betaAR antagonist metoprolol (CSQ/betaARKct nontreated vs. CSQ/betaARKct metoprolol treated, 15 +/- 1 weeks vs. 25 +/- 2 weeks, P < 0.0001). Thus, overexpression of the betaARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with beta-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of betaARK1 inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring beta-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular beta-adrenergic signaling defects including down-regulation of myocardial beta-adrenergic receptors (beta-ARs), functional beta-AR uncoupling, and an up-regulation of the beta-AR kinase (betaARK1). Adenoviral-mediated gene transfer of the human beta2-AR or an inhibitor of betaARK1 to these failing myocytes led to the restoration of beta-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of betaARK1 activity in the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though the etiology of chronic rejection (CR) is multifactorial, donor specific antibody (DSA) is considered to have a causal effect on CR development. Currently the antibody-mediated mechanisms during CR are poorly understood due to lack of proper animal models and tools. In a clinical setting, we previously demonstrated that induction therapy by lymphocyte depletion, using alemtuzumab (anti-human CD52), is associated with an increased incidence of serum alloantibody, C4d deposition and antibody-mediated rejection in human patients. In this study, the effects of T cell depletion in the development of antibody-mediated rejection were examined using human CD52 transgenic (CD52Tg) mice treated with alemtuzumab. Fully mismatched cardiac allografts were transplanted into alemtuzumab treated CD52Tg mice and showed no acute rejection while untreated recipients acutely rejected their grafts. However, approximately half of long-term recipients showed increased degree of vasculopathy, fibrosis and perivascular C3d depositions at posttransplant day 100. The development of CR correlated with DSA and C3d deposition in the graft. Using novel tracking tools to monitor donor-specific B cells, alloreactive B cells were shown to increase in accordance with DSA detection. The current animal model could provide a means of testing strategies to understand mechanisms and developing therapeutic approaches to prevent chronic rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. METHODS: Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. RESULTS: The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. CONCLUSIONS: Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The endocannabinoid system is known to play a role in regulating myocardial contractility, but the influence of cannabinoid receptor 1 (CB1) deficiency on chronic heart failure (CHF) remains unclear. In this study we attempted to investigate the effect of CB1 deficiency on CHF induced by pressure overload and the possible mechanisms involved. Methods and results: A CHF model was created by transverse aortic constriction (TAC) in both CB1 knockout mice and wild-type mice. CB1 knockout mice showed a marked increase of mortality due to CHF from 4 to 8 weeks after TAC (p = 0.021). Five weeks after TAC, in contrast to wild-type mice, CB1 knockout mice had a higher left ventricular (LV) end-diastolic pressure, lower rate of LV pressure change (± dp/dt max), lower LV contractility index, and a larger heart weight to body weight ratio and lung weight to body weight ratio compared with wild-type mice (all p < 0.05-0.001). Phosphorylation of the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (P38 and ERK) was higher in CB1 knockout mice than that in wild-type mice. In cultured neonatal rat cardiomyocytes, a CB1 agonist reduced cAMP production stimulated by isoproterenol or forskolin, and suppressed phosphorylation of the EGFR, P38, and ERK, while the inhibitory effect of a CB1 agonist on EGFR phosphorylation was abrogated by CB1 knockdown. Conclusion: These findings indicate that cannabinoid receptor 1 inactivation promotes cardiac remodeling by enhancing the activity of the epidermal growth factor receptor and mitogen-activated protein kinases. © 2012 Elsevier Ireland Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents data relating to occupant pre-evacuation times from a university and a hospital outpatient facility. Although the two structures are entirely different they do employ relatively similar procedures: members of staff sweeping areas of the structure to encourage individuals to evacuate. However, the manner in which the dependent population reacts to these procedures is quite different. In the hospital case the patients only evacuated once a member of the nursing staff had instructed them to do so while in the university evacuation the students were less dependent upon the actions of the staff with over 50% of them evacuating with no prior prompting. Although this data may be useful in a variety of areas, it was collected primarily for use within evacuation models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the epidemiology of out of hospital sudden cardiac death (OHSCD) in Belfast from 1 August 2003 to 31 July 2004.

Design: Prospective examination of out of hospital cardiac arrests by using the Utstein style and necropsy reports. World Health Organization criteria were applied to determine the number of sudden cardiac deaths.

Results: Of 300 OHSCDs, 197 (66%) in men, mean age (SD) 68 (14) years, 234 (78%) occurred at home. The emergency medical services (EMS) attended 279 (93%). Rhythm on EMS arrival was ventricular fibrillation (VF) in 75 (27%). The call to response interval (CRI) was mean (SD) 8 (3) minutes. Among patients attended by the EMS, 9.7% were resuscitated and 7.2% survived to leave hospital alive. The CRI for survivors was mean (SD) 5 (2) minutes and for non-survivors, 8 (3) minutes (p < 0.001). Ninety one (30%) OHSCDs were witnessed; of these 91 patients 48 (53%) had VF on EMS arrival. The survival rate for witnessed VF arrests was 20 of 48 (41.7%): all 20 survivors had VF as the presenting rhythm and CRI ? 7 minutes. The European age standardised incidence for OHSCD was 122/100 000 (95% confidence interval 111 to 133) for men and 41/100 000 (95% confidence interval 36 to 46) for women.

Conclusion: Despite a 37% reduction in heart attack mortality in Ireland over the past 20 years, the incidence of OHSCD in Belfast has not fallen. In this study, 78% of OHSCDs occurred at home.