993 resultados para CALCIUM ALUMINATE CEMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have the shortcoming of low mechanical properties. In order to provide strong, bioactive, and biodegradable scaffolds, a new approach of infiltrating the macro-tube ABS (acrylontrile butadiene styrene) templates with a hydroxyapatite/bioactive glass mixed slurry was developed to fabricate porous Si-doped TCP (tri-calcium phosphate) scaffolds. The porous Si-doped TCP ceramics with a high porosity (~65%) and with interconnected macrotubes (~0.8mm in diameter) and micropores (5-100 m) had a high compressive strength (up to 14.68+0.2MPa), which was comparable to that of a trabecular bone and was much higher than those of pure TCP scaffolds. Additional cell attachment study and MTT cytotoxicity assay proved the bioactivity and biocompatibility of the new scaffolds. Thus a potential bioceramic material and a new approach to make the potential scaffolds were developed for bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of poly(acrylic acid) (PAA) with different end groups and molar masses prepared by Atom Transfer Radical Polymerization (ATRP) to inhibit the formation of calcium carbonate scale at low and elevated temperatures was investigated. Inhibition of CaCO3 deposition was affected by the hydrophobicity of the end groups of PAA, with the greatest inhibition seen for PAA with hydrophobic end groups of moderate size (6–10 carbons). The morphologies of CaCO3 crystals were significantly distorted in the presence of these PAAs. The smallest morphological change was in the presence of PAA with long hydrophobic end groups (16 carbons) and the relative inhibition observed for all species were in the same order at 30 °C and 100 °C. As well as distorting morphologies, the scale inhibitors appeared to stabilize the less thermodynamically favorable polymorph, vaterite, to a degree proportional to their ability to inhibit precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactory ensheathing cells (OECs) are specialized glial cells in the mammalian olfactory system supporting growth of axons from the olfactory epithelium into the olfactory bulb. OECs in the olfactory bulb can be subdivided into OECs of the outer nerve layer and the inner nerve layer according to the expression of marker proteins and their location in the nerve layer. In the present study, we have used confocal calcium imaging of OECs in acute mouse brain slices and olfactory bulbs in toto to investigate physiological differences between OEC subpopulations. OECs in the outer nerve layer, but not the inner nerve layer, responded to glutamate, ATP, serotonin, dopamine, carbachol, and phenylephrine with increases in the cytosolic calcium concentration. The calcium responses consisted of a transient and a tonic component, the latter being mediated by store-operated calcium entry. Calcium measurements in OECs during the first three postnatal weeks revealed a downregulation of mGluR(1) and P2Y(1) receptor-mediated calcium signaling within the first 2 weeks, suggesting that the expression of these receptors is developmentally controlled. In addition, electrical stimulation of sensory axons evoked calcium signaling via mGluR(1) and P2Y(1) only in outer nerve layer OECs. Downregulation of the receptor-mediated calcium responses in postnatal animals is reflected by a decrease in amplitude of stimulation-evoked calcium transients in OECs from postnatal days 3 to 21. In summary, the results presented reveal striking differences in receptor responses during development and in axon-OEC communication between the two subpopulations of OECs in the olfactory bulb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaPcoated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients.We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium-signaling pathways controlling EMT induction in cancer cells may therefore be an important therapeutic strategy for preventing metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that concanavalin A (ConA)-induced MMP-2 activation involves both transcriptional and non-transcriptional mechanisms. Here we examined the effects of calcium influx on MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. The calcium ionophore ionomycin caused a dose-dependent inhibition of ConA-induced MMP-2 activation, but had no effect on MT1-MMP mRNA levels. However, Western analysis revealed an accumulation of pro-MT1-MMP (63 kDa), indicating that ionomycin blocked the conversion of pro-MT1-MMP protein to the active 60 kDa form. This suggests that increased calcium levels inhibit the processing of MT1-MMP. This finding may help to elucidate the mechanism(s) which regulates MT1-MMP activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.