924 resultados para C. albicans genotype
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.
Resumo:
Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.
Resumo:
The aim of this thesis was to compare the degradation of human oral epithelial proteins by proteinases of different Candida yeast species. We focused on proteins associated with Candida invasion in the cell-to-cell junction, the basement membrane zone, the extracellular matrix, and local tissue inflammatory regulators. Another main objective was to evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of Candida. The enzymatic activity of the Candida proteinases was verified by gelatin zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were incubated with Candida cells and cell-free fractions, and degradation was detected by fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to detect and compare Candida proteinase activities with MMP-9. These studies showed that the ability of the different Candida yeast species to degrade human Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential correlation exists between the morphological form of the yeasts and the degradative ability; the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. Basement membrane degradation is possible, especially in the junctional epithelium, which contains only Lm-332 as a structural component. Local tissue host inflammatory mediators, such as MMP-9, were activated, and TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a weakened host tissue defence mechanism in vivo.
Resumo:
Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.
Resumo:
A novel burn wound hydrogel dressing has been previously developed which is composed of 2-acrylamido-2-methylpropane sulfonic acid sodium salt with silver nanoparticles. This study compared the antimicrobial efficacy of this novel dressing to two commercially available silver dressings; Acticoat™ and PolyMem Silver(®). Three different antimicrobial tests were used: disc diffusion, broth culture, and the Live/Dead(®) Baclight™ bacterial viability assay. Burn wound pathogens (P. aeruginosa, MSSA, A. baumannii and C. albicans) and antibiotic resistant strains (MRSA and VRE) were tested. All three antimicrobial tests indicated that Acticoat™ was the most effective antimicrobial agent, with inhibition zone lengths of 13.9-18.4mm. It reduced the microbial inocula below the limit of detection (10(2)CFU/ml) and reduced viability by 99% within 4h. PolyMem Silver(®) had no zone of inhibition for most tested micro-organisms, and it also showed poor antimicrobial activity in the broth culture and Live/Dead(®) Baclight™ assays. Alarmingly, it appeared to promote the growth of VRE. The silver hydrogel reduced most of the tested microbial inocula below the detection limit and decreased bacterial viability by 94-99% after 24h exposure. These results support the possibility of using this novel silver hydrogel as a burn wound dressing in the future
Resumo:
The purpose of this study was to evaluate subjective food-related gastrointestinal symptoms and their relation to cow’s milk by determining the genotype of adult-type hypolactasia, measuring antibodies against milk protein, and screening the most common cause for secondary hypolactasia, namely coeliac disease. The whole study group comprised 1900 adults who gave a blood sample for the study when they attended a health care centre laboratory for various reasons. Of these 1885 (99%) completed a questionnaire on food-related gastrointestinal symptoms. Study No. I evaluated the prevalence of adult-type hypolactasia and its correlation to self-reported milk induced gastrointestinal symptoms. The testing for hypolactasia was done by determination of the C/T-13910 genotypes of the study subjects. The results show that patients with the C/C-13910 genotype associated with adult type hypolactasia consume less milk than those with C/T-13910 and T/T-13910 genotypes. Study No. II evaluated the prevalence and clinical characteristics of undiagnosed coeliac disease in the whole study population with transglutaminase and endomysium antibodies and their correlation with gastrointestinal symptoms. The prevalence of coeliac disease was 2 %, which is surprisingly high. Serum transglutaminase and endomysium antibodies are valuable tools for recognising an undiagnosed coeliac disease in outpatient clinics. In the study No. III the evaluation of milk protein IgE related hypersensitivity was carried out by stratifying all 756 study subjects with milk related problems and randomly choosing 100 age and sex matched controls with no such symptoms from the rest of the original study group. In the study No. IV 400 serum samples were randomly selected for analyzing milk protein related IgA and IgG antibodies and their correlation to milk related GI-symptoms. The measurement of milk protein IgA, IgE or IgG (studies No. III and IV) did not correlate clearly to milk induced symptoms and gave no clinically significant information; hence their measurement is not encouraged in outpatient clinics. In conclusion, adult type hypolactasia is often considered the reason for gastrointestinal symptoms in adults and determination of the C/T-13910 genotypes is a practical way of diagnosing adult type hypolactasia in an outpatient setting. Undiagnosed coeliac disease, should be actively screened and diagnosed in order to apply a gluten free diet and avoid the GI-symptoms and nutritional deficiencies. Cow’s milk hypersensitivity in the adult population is difficult to diagnose since the mechanism in which it is mediated is still unclear. Measuring of cow’s milk protein specific antibodies IgE, IgA or IgG do not correlate with subjective milk-related GI-symptoms.
Resumo:
Organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by the SLCO1B1 gene, is an influx transporter expressed on the sinusoidal membrane of human hepatocytes. The common c.521T>C (p.Val174Ala) single-nucleotide polymorphism (SNP) of the SLCO1B1 gene has been associated with reduced OATP1B1 transport activity in vitro and increased plasma concentrations of several of its substrate drugs in vivo in humans. Another common SNP of the SLCO1B1 gene, c.388A>G (p.Asn130Asp), defining the SLCO1B1*1B (c.388G-c.521T) haplotype, has been associated with increased OATP1B1 transport activity in vitro. The aim of this thesis was to investigate the role of SLCO1B1 polymorphism in the pharmacokinetics of the oral antidiabetic drugs repaglinide, nateglinide, rosiglitazone, and pioglitazone. Furthermore, the effect of the SLCO1B1 c.521T>C SNP on the extent of interaction between gemfibrozil and repaglinide as well as the role of the SLCO1B1 c.521T>C SNP in the potential interaction between atorvastatin and repaglinide were evaluated. Five crossover studies with 2-4 phases were carried out, with 20-32 healthy volunteers in each study. The effects of the SLCO1B1 c.521T>C SNP on single doses of repaglinide, nateglinide, rosiglitazone, and pioglitazone were investigated in Studies I and V. In Study II, the effects of the c.521T>C SNP on repaglinide pharmacokinetics were investigated in a dose-escalation study, with repaglinide doses ranging from 0.25 to 2 mg. The effects of the SLCO1B1*1B/*1B genotype on repaglinide and nateglinide pharmacokinetics were investigated in Study III. In Study IV, the interactions of gemfibrozil and atorvastatin with repaglinide were evaluated in relation to the c.521T>C SNP. Plasma samples were collected for drug concentration determinations. The pharmacodynamics of repaglinide and nateglinide was assessed by measuring blood glucose concentrations. The mean area under the plasma repaglinide concentration-time curve (AUC) was ~70% larger in SLCO1B1 c.521CC participants than in c.521TT participants (P ≤ 0.001), but no differences existed in the pharmacokinetics of nateglinide, rosiglitazone, and pioglitazone between the two genotype groups. In the dose-escalation study, the AUC of repaglinide was 60-110% (P ≤ 0.001) larger in c.521CC participants than in c.521TT participants after different repaglinide doses. Moreover, the AUC of repaglinide increased linearly with repaglinide dose in both genotype groups (r > 0.88, P 0.001). The AUC of repaglinide was ~30% lower in SLCO1B1*1B/*1B participants than in SLCO1B1*1A/*1A (c.388AA-c.521TT) participants (P = 0.007), but no differences existed in the AUC of nateglinide between the two genotype groups. In the drug-drug interaction study, the mean increase in the repaglinide AUC by gemfibrozil was ~50% (P = 0.002) larger in c.521CC participants than in c.521TT participants, but the relative (7-8-fold) increases in the repaglinide AUC did not differ significantly between the genotype groups. In c.521TT participants, atorvastatin increased repaglinide peak plasma concentration and AUC by ~40% (P = 0.001) and ~20% (P = 0.033), respectively. In each study, after repaglinide administration, there was a tendency towards lower blood glucose concentrations in c.521CC participants than in c.521TT participants. In conclusion, the SLCO1B1 c.521CC genotype is associated with increased and the SLCO1B1*1B/*1B genotype with decreased plasma concentrations of repaglinide, consistent with reduced and enhanced hepatic uptake, respectively. Inhibition of OATP1B1 plays a limited role in the interaction between gemfibrozil and repaglinide. Atorvastatin slightly raises plasma repaglinide concentrations, probably by inhibiting OATP1B1. The findings on the effect of SLCO1B1 polymorphism on the pharmacokinetics of the drugs studied suggest that in vivo in humans OATP1B1 significantly contributes to the hepatic uptake of repaglinide, but not to that of nateglinide, rosiglitazone, or pioglitazone. SLCO1B1 polymorphism may be associated with clinically significant differences in blood glucose-lowering response to repaglinide, but probably has no effect on the response to nateglinide, rosiglitazone, or pioglitazone.
Resumo:
Kohonneiden kolesterolipitoisuuksien alentamisessa käytettävien statiinien hyödyt sydän- ja verisuonisairauksien estossa on vahvasti osoitettu ja niiden käyttö on niin Suomessa kuin muuallakin maailmassa kasvanut voimakkaasti – Suomessa statiininkäyttäjiä on noin 600 000. Statiinilääkitys on pitkäaikaisessakin käytössä melko hyvin siedetty, mutta yleisimpinä haittavaikutuksina voi ilmetä lihasheikkoutta, -kipua ja -kramppeja, jotka voivat edetä jopa henkeä uhkaavaksi lihasvaurioksi. Lihashaittariski suurenee suhteessa statiiniannokseen ja plasman statiinipitoisuuksiin. Statiinien plasmapitoisuuksissa, tehossa ja haittavaikutusten ilmenemisessä on suuria potilaskohtaisia eroja. SLCO1B1-geenin koodaama OATP1B1-kuljetusproteiini kuljettaa monia elimistön omia aineita ja lääkeaineita verenkierrosta solukalvon läpi maksasoluun, mm. statiineja, joiden kolesterolia alentava vaikutus ja poistuminen elimistöstä tapahtuvat pääosin maksassa. Erään SLCO1B1-geenin nukleotidimuutoksen (c.521T>C) tiedetään heikentävän OATP1B1:n kuljetustehoa. Tässä väitöskirjatyössä selvitettiin SLCO1B1-geenin perinnöllistä muuntelua suomalaisilla ja eri väestöissä maailmanlaajuisesti. Lisäksi selvitettiin SLCO1B1:n muunnosten vaikutusta eri statiinien pitoisuuksiin (farmakokinetiikka) ja vaikutuksiin (farmakodynamiikka) sekä kolesteroliaineenvaihduntaan. Näihin tutkimuksiin valittiin SLCO1B1-genotyypin perusteella terveitä vapaaehtoisia koehenkilöitä, joille annettiin eri päivinä kerta-annos kutakin tutkittavaa statiinia: fluvastatiinia, pravastatiinia, simvastatiinia, rosuvastatiinia ja atorvastatiinia. Verinäytteistä määritettiin plasman statiinien ja niiden aineenvaihduntatuotteiden sekä kolesterolin ja sen muodostumista ja imeytymistä kuvaavien merkkiaineiden pitoisuuksia. Toiminnallisesti merkittävien SLCO1B1-geenimuunnosten esiintyvyydessä todettiin suuria eroja eri väestöjen välillä. Suomalaisilla SLCO1B1 c.521TC-genotyypin (geenimuunnos toisessa vastinkromosomissa) esiintyvyys oli noin 32 % ja SLCO1B1 c.521CC-genotyypin (geenimuunnos molemmissa vastinkromosomeissa) esiintyvyys noin 4 %. Globaalisti geenimuunnosten esiintyvyys korreloi maapallon leveyspiirien kanssa siten, että matalaan transportteriaktiivisuuteen johtavat muunnokset olivat yleisimpiä pohjoisessa ja korkeaan aktiivisuuteen johtavat päiväntasaajan lähellä asuvilla väestöillä. SLCO1B1-genotyypillä oli merkittävä vaikutus statiinien plasmapitoisuksiin lukuun ottamatta fluvastatiinia. Simvastatiinihapon plasmapitoisuudet olivat keskimäärin 220 %, atorvastatiinin 140 %, pravastatiinin 90 % ja rosuvastatiinin 70 % suuremmat c.521CC-genotyypin omaavilla koehenkilöillä verrattuna normaalin c.521TT-genotyypin omaaviin. Genotyypillä ei ollut merkittävää vaikutusta minkään statiinin tehoon tässä kerta-annostutkimuksessa, mutta geenimuunnoksen kantajilla perustason kolesterolisynteesinopeus oli suurempi. Tulokset osoittavat, että SLCO1B1 c.521T>C geenimuunnos on varsin yleinen suomalaisilla ja muilla ei-afrikkalaisilla väestöillä. Tämä geenimuunnos voi altistaa erityisesti simvastatiinin, mutta myös atorvastatiinin, pravastatiinin ja rosuvastatiinin, aiheuttamille lihashaitoille suurentamalla niiden plasmapitoisuuksia. SLCO1B1:n geenimuunnoksen testaamista voidaan tulevaisuudessa käyttää apuna valittaessa sopivaa statiinilääkitystä ja -annosta potilaalle, ja näin parantaa sekä statiinihoidon turvallisuutta että tehoa.
Resumo:
Candida species are an important cause of nosocomial bloodstream infections in hospitalized patients worldwide, with associated high mortality, excess length of stay and costs. Main contributors to candidemias is profound immunosuppression due to serious underlying condition or intensive treatments leading to an increasing number of susceptible patients. The rank order of causative Candida species varies over time and in different geographic locations. The aim of this study was to obtain information on epidemiology of candidemia in Finland, to identify trends in incidence, causative species, and patient populations at risk. In order to reveal possible outbreaks and assess the value of one molecular typing method, restriction enzyme analysis (REA), in epidemiological study, we analyzed C. albicans bloodstream isolates in Uusimaa region in Southern Finland during eight years. The data from the National Infectious Disease Register were used to assess the incidence and epidemiological features of candidemia cases. In Helsinki University Central Hospital (HUCH) all patients with blood culture yielding any Candida spp. were identified from laboratory log-books and from Finnish Hospital Infection Program. All the patients with a stored blood culture isolate of C. albicans were identified through microbiology laboratory logbooks, and stored isolates were genotyped with REA in the National Institute for Health and Welfare (former KTL). The incidence of candidemia in Finland is globally relatively low, but increased between between 1990s and 2000s. The incidence was highest in males >65 years of age, but incidence rates for patients <1-15 years were lower during 2000s than during 1990s. In HUCH the incidence of candidemia remained low and constant during our 18 years of observation, but a significant shift in patient-populations at risk was observed, associated with patients treated in intensive care units, such as premature neonates and surgical patients. The predominating causative species in Finland and in HUCH is C. albicans, but the proportion of C. glabrata increased considerably. The crude one-month case fatality was constantly high between 28-33%. REA differentiated efficiently between C. albicans blood culture isolates and no clusters were observed in the hospitals involved, despite of abundant transfer of patients among them. Candida spp. are an important cause of nosocomial blood stream infections in Finland, and continued surveillance is necessary to determine the overall trends and patient groups at risk, and reduce the impact of these infections in the future. Molecular methods provide an efficient tool for investigation of suspected outbreak and should be available in the future in Finland, also.
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.
Resumo:
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Yläruoansulatuskanavan syöpien tärkeimpiä riskitekijöitä ovat tupakointi, alkoholin suurkulutus ja huono suuhygienia. Näiden tekijöiden vaikutuksesta sylkeen erittyy korkeita pitoisuuksia asetaldehydiä, jonka Kansainvälinen syöväntutkimuslaitos (IARC) on luokitellut 1-ryhmän karsinogeeniksi. Suuri osa syljen asetaldehydistä on suun mikrobien tuottamaa. Tiedetään, että suun mikrobiomiin kuuluvat bakteerit ja Candida albicans -hiivat kykenevät tuottamaan mutageenisiä määriä asetaldehydiä. C. albicansin aiheuttaman kroonisen mukosiitin onkin todettu olevan karsinogeeninen. Muiden kandidalajien (non- albicans Candida, NAC) määrän on todettu kasvavan etenkin suusyöpähoitoja saavilla potilailla ja toisinaan osalle näistä potilaista kehittyy uusi primäärikarsinooma kandidamukosiitin läheisyyteen. NAC-lajien kykyä tuottaa asetaldehydiä ei kuitenkaan ole aiemmin tutkittu. Tutkimuksen tavoitteena oli selvittää pystyvätkö NAC-lajit tuottamaan karsinogeenisiä määriä asetaldehydiä etanoli- ja glukoosi-inkubaatiossa in vitro. Kaikkiaan kolmenkymmenen (n=30) kliinisen ja kantapankkiNAC-kannan kyky tuottaa asetaldehydiä etanoli- ja glukoosi-inkubaatiossa mitattiin kaasukromatografilla. Yksi C. albicans kantapankkikanta oli mukana kontrollina. Kaikki kandidahiivat tuottivat merkittäviä määriä asetaldehydiä etanoli-inkubaatiossa in vitro. C. tropicalis –kannat tuottivat eniten (252,3 µM) ja C. krusei –kannat vähiten (54,6 µM) asetaldehydiä etanolista. NAC-lajeista ainoastaan C. glabrata tuotti merkittäviä määriä asetaldehydiä glukoosia fermentoimalla. Suuontelon kolonisoituminen merkittävään asetaldehydituotantoon pystyvällä NAC-lajilla kuten C. glabratalla voi altistaa suun limakalvon paikallisesti korkeille määrille asetaldehydiä, mikä voi johtaa suusyövän kehittymiseen.
Resumo:
Oral cancer is the seventh most common cancer worldwide and its incidence is increasing. The most important risk factors for oral cancer are chronic alcohol consumption and tobacco smoking, up to 80 % of oral carcinomas are estimated to be caused by alcohol and tobacco. They both trigger an increased level of salivary acetaldehyde, during and after consumption, which is believed to lead to carcinogenesis. Acetaldehyde has multiple mutagenic features and it has recently been classified as a Group 1 carcinogen for humans by the International Agency for Research on Cancer. Acetaldehyde is metabolized from ethanol by microbes of oral microbiota. Some oral microbes possess alcohol dehydrogenase enzyme (ADH) activity, which is the main enzyme in acetaldehyde production. Many microbes are also capable of acetaldehyde production via alcohol fermentation from glucose. However, metabolism of ethanol into acetaldehyde leads to production of high levels of this carcinogen. Acetaldehyde is found in saliva during and after alcohol consumption. In fact, rather low ethanol concentrations (2-20mM) derived from blood to saliva are enough for microbial acetaldehyde production. The high acetaldehyde levels in saliva after alcohol challenge are explained by the lack of oral microbiota and mucosa to detoxify acetaldehyde by metabolizing it into acetate and acetyl coenzymeA. The aim of this thesis project was to specify the role of oral microbes in the in vitro production of acetaldehyde in the presence of ethanol. In addition, it was sought to establish whether microbial metabolism could also produce acetaldehyde from glucose. Furthermore, the potential of xylitol to inhibit ethanol metabolism and acetaldehyde production was explored. Isolates of oral microbes were used in the first three studies. Acetaldehyde production was analyzed after ethanol, glucose and fructose incubation with gas chromatography measurement. In studies I and III, the ADH enzyme activity of some microbes was measured by fluorescence. The effect of xylitol was analyzed by incubating microbes with ethanol and xylitol. The fourth study was made ex vivo and microbial samples obtained from different patient groups were analyzed. This work has demonstrated that isolates of oral microbiota are able to produce acetaldehyde in the presence of clinically relevant ethanol and glucose concentrations. Significant differences were found between microbial species and isolates from different patient groups. In particular, the ability of candidal isolates from APECED patients to produce significantly more acetaldehyde in glucose incubation compared to healthy and cancer patient isolates is an interesting observation. Moreover, xylitol was found to reduce their acetaldehyde production significantly. Significant ADH enzyme activity was found in the analyzed high acetaldehyde producing streptococci and candida isolates. In addition, xylitol was found to reduce the ADH enzyme activity of C. albicans. Some results from the ex vivo study were controversial, since acetaldehyde production did not correlate as expected with the amount of microbes in the samples. Nevertheless, the samples isolated from patients did produce significant amounts of acetaldehyde with a clinically relevant ethanol concentration.
Resumo:
Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.