927 resultados para Brummer-Korvenkontio, Markus
Resumo:
Microcirculation (2010) 17, 69-78. doi: 10.1111/j.1549-8719.2010.00002.x Abstract Background: This study was designed to explore the effect of transient inducible nitric oxide synthase (iNOS) overexpression via cationic liposome-mediated gene transfer on cardiac function, fibrosis, and microvascular perfusion in a porcine model of chronic ischemia. Methods and Results: Chronic myocardial ischemia was induced using a minimally invasive model in 23 landrace pigs. Upon demonstration of heart failure, 10 animals were treated with liposome-mediated iNOS-gene-transfer by local intramyocardial injection and 13 animals received a sham procedure to serve as control. The efficacy of this iNOS-gene-transfer was demonstrated for up to 7 days by reverse transcriptase-polymerase chain reaction in preliminary studies. Four weeks after iNOS transfer, magnetic resonance imaging showed no effect of iNOS overexpression on cardiac contractility at rest and during dobutamine stress (resting ejection fraction: control 27%, iNOS 26%; P = ns). Late enhancement, infarct size, and the amount of fibrosis were similar between groups. Although perfusion and perfusion reserve in response to adenosine and dobutamine were not significantly modified by iNOS-transfer, both vessel number and diameter were significantly increased in the ischemic area in the iNOS-treated group versus control (point score: control 15.3, iNOS 34.7; P < 0.05). Conclusions: Our findings demonstrate that transient iNOS overexpression does not aggravate cardiac dysfunction or postischemic fibrosis, while potentially contributing to neovascularization in the chronically ischemic heart.
Resumo:
Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.