957 resultados para Blood-oxygen Transport


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some recent studies have characterized the stability of blood variables commonly measured for the Athlete Biological Passport. The aim of this study was to characterize the impact of different shipments conditions and the quality of the results returned by the haematological analyzer. Twenty-two healthy male subjects provided five EDTA tubes each. Four shipment conditions (24, 36, 48, 72 h) under refrigerated conditions were tested and compared to a set of samples left in the laboratory also under refrigerated conditions (group control). All measurements were conducted using two Sysmex XT-2000i analyzers. Haemoglobin concentration, reticulocytes percentage, and OFF-score numerical data were the same for samples analyzed just after collection and after a shipment under refrigerated conditions up to 72 h. Detailed information reported especially by the differential (DIFF) channel scatterplot of the Sysmex XT-2000i indicated that there were signs of blood deterioration, but were not of relevance for the variables used in the Athlete Biological Passport. As long as the cold chain is guaranteed, the time delay between the collection and the analyses of blood variables can be extended. Copyright© 2015 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)¹ - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was designed to evaluate the effect of different conditions of collection, transport and storage on the quality of blood samples from normal individuals in terms of the activity of the enzymes ß-glucuronidase, total hexosaminidase, hexosaminidase A, arylsulfatase A and ß-galactosidase. The enzyme activities were not affected by the different materials used for collection (plastic syringes or vacuum glass tubes). In the evaluation of different heparin concentrations (10% heparin, 5% heparin, and heparinized syringe) in the syringes, it was observed that higher doses resulted in an increase of at least 1-fold in the activities of ß-galactosidase, total hexosaminidase and hexosaminidase A in leukocytes, and ß-glucuronidase in plasma. When the effects of time and means of transportation were studied, samples that had been kept at room temperature showed higher deterioration with time (72 and 96 h) before processing, and in this case it was impossible to isolate leukocytes from most samples. Comparison of heparin and acid citrate-dextrose (ACD) as anticoagulants revealed that ß-glucuronidase and hexosaminidase activities in plasma reached levels near the lower normal limits when ACD was used. In conclusion, we observed that heparin should be used as the preferable anticoagulant when measuring these lysosomal enzyme activities, and we recommend that, when transport time is more than 24 h, samples should be shipped by air in a styrofoam box containing wet ice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: The ATP-binding cassette transporters, ABCA1 and ABCG1, are LXR-target genes that play an important role in reverse cholesterol transport. We examined the effects of inhibitors of the cholesterol absorption (ezetimibe) and synthesis (statins) on expression of these transporters in HepG2 cells and peripheral blood mononuclear cells (PBMCs) of individuals with primary (and nonfamilial) hypercholesterolemia (HC). Materials & methods: A total of 48 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) and 23 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg of each/day/4 weeks). Gene expression was examined in statin- or ezetimibe-treated and control HepG2 cells as well as PBMCs using real-time PCR. Results: In PBMCs, statins and ezetimibe downregulated ABCA1 and ABCG1 mRNA expression but did not modulate NR1H2 (LxR-beta) and NR1H3 (LXR-alpha) levels. Positive correlations of ABCA1 with ABCG1 and of NR1H2 with NR1H3 expressions were found in all phases of the treatments. In HepG2 cells, ABCA1 mRNA levels remained unaltered while ABCG1 expression was increased by statin (1.0-10.0 mu M) or ezetimibe (5.0 mu M) treatments. Atorvastatin upregulated NR1H2 and NR1H3 only at 10.0 mu M, meanwhile ezetimibe (1.0-5.0 mu M) downregulated NR1H2 but did not change NR1H3 expression. Conclusion: Our findings reveal that lipid-lowering drugs downregulate ABCA1 and ABCG1 mRNA expression in PBMCs of HC individuals and exhibit differential effects on HepG2 cells. Moreover, they indicate that the ABCA1 and ABCG1 transcript levels were not correlated directly to LXR mRNA expression in both cell models treated with lipid-lowering drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of 2 different levels of the inspired oxygen fraction (FiO(2)) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO(2) of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison's multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO(2) levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO(2) levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neste estudo, foram investigadas as densidades de carga adequadas para transporte de matrinxãs juvenis em sistema fechado com sacos plásticos. O transporte de 4h foi feito com peixes (23,5±0,4g; 11,6 (0,08cm) em jejum por 24h, em densidades de 83g L-1 (D1), 125g L-1 (D2), 168g L-1 (D3) e 206g L-1 (D4). Os peixes foram amostrados antes do transporte (AT), logo após o transporte (chegada) (DT) e 24h depois. A qualidade da água foi monitorada antes da captura dos peixes nos tanques de depuração, após o transporte nos sacos plásticos e nos tanques de recuperação. O oxigênio da água diminuiu para valores inferiores a 4mg L-1 em D2, D3 e D4, a temperatura esteve em torno de 32°C, pH 6,5-6,78, a amônia total foi de 1,09-1,7mg L-1, a amônia não-ionizada foi de 3,58-9,33 x 10³mg L-1 e alcalinidade 134-165mg CaCO3 L-1. O cortisol plasmático e a glicose sanguínea aumentaram após o transporte nos peixes em todas as densidades ensaiadas, voltando aos valores controle 24h depois. Os valores de osmolaridade não mudaram logo após o transporte, mas aumentaram 24h depois de modo igual em todas as densidades. O cloreto plasmático diminuiu na chegada, de modo inversamente proporcional à densidade de carga. O hematócrito diminuiu 24h depois da chegada dos peixes, em todas as densidades testadas, mas não houve diferença no número de eritrócitos. Não houve mortalidade até uma semana após o transporte. O matrinxã mostrou ser uma espécie tolerante a altas densidades de carga em embalagens para transporte além de suportar baixos níveis de oxigênio na água.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SnO2 deposited by sol-gel is a polycrystalline film with small grain size. Oxygen present at a less grain boundary traps electrons and then the depletion layer around the potential barrier of the grain boundary becomes wider, comparable to the grain size. We have modeled the conductivity taking into account the trapped charge at the depletion layer of the grain boundary and other scattering mechanisms such as ionized impurity and polar optical. Experimental data of photoconductivity of SnO2 sol-gel films are simulated considering the dominant scattering at grain boundary and crystallite bulk. The fraction of trapped charge at the grain boundary depends on temperature and wavelength of irradiating light, being as high as 50% for illumination in the range 500-600 nm for SnO2-2%Nb as grown sample annealed in air to 550°C. This fraction can be quite reduced depending on exposure to light and annealing under different oxygen partial pressure conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was aimed to verify if chicks from eggs injected with ascorbic acid and subjected to thermal stress would have higher immunity than chicks from incubation at thermoneutrality without injection of ascorbic acid. The parameters evaluated were temperature on oxygen saturation in hemoglobin, glucose, number of erythrocytes, hematocrit rate and number of hemoglobins of newly hatched male chicks, hatched from eggs injected with ascorbic acid (AA) and subjected to thermal stress during incubation. The experimental design was completely randomized in factorial scheme 5 (application levels of ascorbic acid) x 2 (incubation temperatures). The data were subjected to analysis of variance using the General Linear Model procedure (GLM) of SAS ®. For the parameters (number of erythrocytes, rate of hematrocit and values of hemoglobin), there was significant interaction (p <0.05) between treatments in egg and incubation temperatures. Analyzing the interactions for these parameters, it was observed that the application of 0% ascorbic acid in egg minimized the effect of heat stress when compared with treatment without injection. The application of ascorbic acid levels in eggs incubated under heat stress failed to maximize the immunity of newly hatched chicks. It is assumed that the increased liquid in the amniotic fluid, in those embryos injected with water, favored the lower heat conductance for these embryos, thus helping in their development in relation to immunity. Considering that hemoglobin is related to the transport of gases, these data suggest that increasing the concentration of AA solution inoculated may influence the respiratory rates of eggs.