981 resultados para Birefringent Element


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test oil a standard rectangular rigid tank partially filled with liquid The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements. and the obtained results are compared with available results in the published literature (C) 2009 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from parametric finite element analyses of geocell-supported embankments constructed on weak foundation soils. A composite model is used to numerically simulate the improvement in the strength and stiffness of the soil as a result of geocell confinement. The shear strength of the geocell-encased soil is obtained as a function of the additional confining pressure due to the geocell encasement considering it as a thin cylinder subjected to internal pressure. The stiffness of the geocell-encased soil is obtained from the stiffness of the unreinforced soil and the tensile modulus of the geocell material using an empirical equation. The validity of the model is verified by simulating the laboratory experiments on model geocell-supported embankments. Parametric finite element analyses of the geocell-supported embankments are carried out by varying the dimensions of the geocell layer, the tensile strength of the material used for fabricating the geocell layer, the properties of the infill soil, and the depth of the foundation layer. Some important guidelines for selecting the geocell reinforcement to support embankments on weak foundation soils are established through these numerical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a search for associated production of the standard model (SM) Higgs boson and a $Z$ boson where the $Z$ boson decays to two leptons and the Higgs decays to a pair of $b$ quarks in $p\bar{p}$ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ we see no evidence of a Higgs boson with a mass between 100 GeV$/c^2$ and 150 GeV$/c^2$. We set 95% confidence level (C.L.) upper limits on the cross-section for $ZH$ production as a function of the Higgs boson mass $m_H$; the limit is 8.2 times the SM prediction at $m_H = 115$ GeV$/c^2$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a measurement of the $WW+WZ$ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6~fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The $WW+WZ$ cross section is measured to be $17.4\pm3.3$~pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace elements zinc, copper, manganese, molybdenum and cobalt have been shown to have varying effects on growth and trace element composition of the silkworm. Results indicate the important role of manganese in the normal metabolism of the insect. Cobalt has been shown to exert a very favourable effect on growth and silk yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzimidazole is toxic to silkworms due to its antagonistic action to purines. Cobalt and copper possess the capacity to reverse its toxicity because of their ability to form complexes with benzimidazole. For reasons unknown cobalt exerts a favourable effect in its free form rather than in the vitamin form on the insect growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract (Creating a whole from fragments. On the translation of cohesive elements in Sjón's Steelnight): In this paper, I discuss the Swedish translation of the Icelandic writer Sjón’s debut novel Steelnight: a story (in Swedish Stålnatt – en berättelse). Steelnight is a fragmented novel which is located at the border between poetry and prose. At the beginning of the story, the writer introduces two main plots (with subplots). At first glance, it may seem as though the plots do not share much in common. However, a closer analysis of the text reveals that there are striking parallels between the plots which are created partly by the writer’s use of cohesive elements. Thus, despite the fragmented style, the writer creates cohesion in the text by using stylistic means such as repetition of certain nouns and adjectives and by a frequent use of personal and demonstrative pronouns. This use of cohesive elements creates a challenge for the translator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a measurement of the top quark mass in the all-hadronic channel (\tt $\to$ \bb$q_{1}\bar{q_{2}}q_{3}\bar{q_{4}}$) using 943 pb$^{-1}$ of \ppbar collisions at $\sqrt {s} = 1.96$ TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to $\ttbar$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 $\pm$ 3.7 (stat.+JES) $\pm$ 2.1 (syst.) GeV/$c^{2}$. The combined uncertainty on the top quark mass is 4.3 GeV/$c^{2}$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.