885 resultados para Behaviorismo Radical
Resumo:
Water-soluble polyhydroxylated fullerene derivatives (fullerenol) were synthesized, and their scavenging ability for (OH)-O-.-radical was studied by the combination of ESR spectroscopy and spin-trapping technique with phenyl-t-butyl-nitrone. It was found that fullerenols showed an excellent efficiency in eliminating (OH)-O-. free radicals generated by UV photolysis of H2O2. At an applied fullerenol concentration of 0, 3 mg/mL in the final solution, a radical scavenging efficiency of approximate 95% was achieved, revealing the potential use of these compounds as novel potent free radical scavengers in biological systems.
Resumo:
A new method for the preparation of polyalkyl and polyarenefullerene derivatives C-60(RH)(n)(R=Bu,n=1-3; R=Ph,n=1-10) by the reaction of C-60 with organotin hydride in toluene is described. Another series of products of stannanes R(a)Sn(b)H(c) (R=Bu, a=3-8, b=1-4, c=0-3 R=Ph, a=3-11, b=1-5, c=0-4) were also obtained, which shows that C-60 can catalyze polymerization of organic-tin. These products were determined by mass and infrared spectrometry. And the possible reaction mechanisms are discussed.
Resumo:
The reaction of buckministerfullerene (C-60) with tri-n-blltyltin hydride(n-Bu(3)SnH) in toluene solution has been investigated. According to mass spectrometry analysis, the products of above reaction are C-60(BuH)(n)(n = 1 similar to 3) and Bu(x)Sn(y)H(x) (x = 3 similar to 8, y = 1 similar to 4,approximate to = 0 similar to 3). The reaction maybe provide a new method for the synthesis of alkylated fullerene derivatives. Where C-60 also takes a role of a catalysis of organtic-tin polymerization. The radical reaction mechanism has been discussed.
Resumo:
A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.
Resumo:
Four new highly brominated and fully substituted mono- and bis-phenols, 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)pyrrolidin-2-one (1), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)ethane (2), 6-(2,3,6-tribromo-4,5-dihydroxybenzyl)-2,5-dibromo-3,4-dihydroxybenzyl methyl ether (3), and 2,3,6-tribromo-4,5-dihydroxybenzyl methyl sulfone (4), were characterized from the marine red alga Symphyocladia latiuscula. In addition, five known bromophenols, bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (5), bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (6), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (7), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (8), and 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (9), were also isolated and identified. The structures of these compounds were elucidated by spectroscopic methods including 1D and 2D NMR as well as by low- and high-resolution mass spectrometric analysis. Structurally, all of these compounds are highly brominated and fully substituted, and contain one or two 2,3,6-tribromo-4,5-dihydroxyphenyl unit(s) in each of the molecules. In addition, compound 4 possesses a unique sulfone structural feature. Each of the isolated compounds was evaluated for alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity and all were found to be potent, with IC50 values ranging from 8.1 to 24.7 mu M, compared to the known positive control butylated hydroxytoluene (BHT), with an IC50 of 81.8 mu M.
Resumo:
A new acetylated flavanol, 3,7-O-diacetyl (-)-epicatechin (3), and seven known flavanol derivatives, (-)-epicatechin (1), 3-O-acetyl (-)-epicatechin (2), 3,3 ',4 ',5,7-O-pentaacetyl (-)-epicatechin (4), (+)-afzelechin (5), (+)-catechin (6), cinchonain Ib (7), and proanthocyanidin B2 (8), were isolated from the stems and twigs of the mangrove plant Rhizophora stylosa and identified. The crude extract, the different fractions and all of the purified compounds were evaluated for DPPH radical scavenging activity.
Resumo:
Three new (1-3) and three known (4-6) bromophenols were isolated and identified from the marine red alga Polysiphonia urceolata. On the basis of extensive analysis of spectroscopic data, the structures of these compounds were determined to be 7-bromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol (1), 4,7-dibromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol (2), 1,8-dibromo-5,7-dihydrodibenzo[c,e]oxepine-2,3,9,10-tetraol (3), urceolatol (4), 3-,bromo-4,5-dihydroxybenzaidehyde (5), and 3,5-dibromo-4-hydroxybenzaldehyde (6). Each of the isolated compounds was evaluated for alpha,alpha-dipheny1-beta-picrylhydrazyl (DPPH) radical scavenging activity, and all were found to be potent, with IC50 values ranging from 6.1 to 35.8 mu M, compared to the positive control, butylated hydroxytoluene (BHT), with an IC50 of 83.8 mu M.
Resumo:
There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl4-O-(alpha-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(alpha-D-ribofuranosyl)questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-O-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.
Resumo:
Three new natural occurring bromophenols, 3-(3-bromo-4,5-dihydroxyphenyl)-2-(3,5-dibromo-4-hydroxyphenyl)propionic acid (1), (E)-4-(3-bromo-4,5-dihydroxyphenyl)-but-3-en-2-one (2), and (3,5-dibromo-4-hydroxyphenyl) acetic acid butyl ester (3), together with one known bromophenol, 1,2-bis(3-bromo-4,5-dihydroxyphenyl)ethane (4), were isolated and identified from the marine red alga Polysiphonia urceolata. The structures of these compounds were elucidated by extensive analysis of ID and 2D NMR and IR spectra and MS data. Each of the isolated compounds was evaluated for scavenging alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical activity and all of them exhibited significant activity with IC50 values ranging from 9.67 to 21.90 mu M, compared to the positive control, a well-known antioxidant butylated hydroxytoluene (BHT), with IC50 83.84 mu M. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (IFF), second fraction (SF), and 30% (NH4)(2)SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 mu g/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 6 1, and 88 pg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 mu g/mL, but values EC50 of Vc and mannitol were 1907 and 4536 mu g/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food. (c) 2005 Elsevier Ltd. All rights reserved.