993 resultados para Basal Ganglia Diseases
Resumo:
The multiple memory systems theory proposes that the hippocampus and the dorsolateral striatum are the core structures of the spatial/relational and stimulus-response (S-R) memory systems, respectively. This theory is supported by double dissociation studies showing that the spatial and cue (S-R) versions of the Morris water maze are impaired by lesions in the dorsal hippocarnpus and dorsal striatum, respectively. In the present study we further investigated whether adult male Wistar rats bearing double and bilateral electrolytic lesions in the dorsal hippocampus and dorsolateral striatum were as impaired as rats bearing single lesions in just one of these structures in learning both versions of the water maze. Such a prediction, based on the multiple memory systems theory, was not confirmed. Compared to the controls, the animals with double lesions exhibited no improvement at all in the spatial version and learned the cued version very slowly. These results suggest that, instead of independent systems competing for holding control over navigational behaviour, the hippocampus and dorsal striatum both play critical roles in navigation based on spatial or cue-based strategies. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ventrolateral caudoputamen (VLCP) is well known to participate in the control of orofacial movements and forepaw usage accompanying feeding behavior. Previous studies from our laboratory have shown that insect hunting is associated with a distinct Fos up-regulation in the VLCP at intermediate rostro-caudal levels. Moreover, using the reversible blockade with lidocaine, we have previously suggested that the VLCP implements the stereotyped actions seen during prey capture and handling, and may influence the motivational drive to start attacking the roaches, as well. However, considering that (1) lidocaine suppresses action potentials not only in neurons, but also in fibers-of-passage, rendering the observed behavioral effect not specific to the ventrolateral caudoputamen; (2) the short lidocaine-induced inactivation period had left a relatively narrow window to observe the behavioral changes; and (3) that the restriction stress to inject the drug could have also disturbed hunting behavior, in the present study, we have examined the role of the VLCP in predatory hunting by placing bilateral NMDA lesions three weeks previous to the behavior testing. We were able to confirm that the VLCP serves to implement the stereotyped sequence of actions seen during prey capture and handling, but the study did not confirm its role in influencing the motivational drive to hunt. Together with other studies from our group, the present work serves as an important piece of information that helps to reveal the neural systems underlying predatory hunting. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.
Resumo:
Introduction Intracranial pressure monitoring is commonly implemented in patients with neurologic injury and at high risk of developing intracranial hypertension, to detect changes in intracranial pressure in a timely manner. This enables early and potentially life-saving treatment of intracranial hypertension. Case presentation An intraparenchymal pressure probe was placed in the hemisphere contralateral to a large basal ganglia hemorrhage in a 75-year-old Caucasian man who was mechanically ventilated and sedated because of depressed consciousness. Intracranial pressures were continuously recorded and never exceeded 17 mmHg. After sedation had been stopped, our patient showed clinical signs of transtentorial brain herniation, despite apparently normal intracranial pressures (less than 10 mmHg). Computed tomography revealed that the size of the intracerebral hematoma had increased together with significant unilateral brain edema and transtentorial herniation. The contralateral hemisphere where the intraparenchymal pressure probe was placed appeared normal. Our patient underwent emergency decompressive craniotomy and was tracheotomized early, but did not completely recover. Conclusions Intraparenchymal pressure probes placed in the hemisphere contralateral to an intracerebral hematoma may dramatically underestimate intracranial pressure despite apparently normal values, even in the case of transtentorial brain herniation.
Resumo:
The aim of the study was to assess the influence of white matter lesions in patients with acute ischemic stroke treated with intra-arterial thrombolysis (IAT). From September 2003 to January 2010, we treated 400 patients with IAT at our institution. Of these patients, 292 were evaluated with MRI scans and included in this observational study. Clinical data were collected prospectively. Outcome after 3 months was measured with the modified Rankin Scale (mRS); mRS 0-1 was considered as favorable outcome. White matter lesions were scored visually by two observers using the semiquantitative Scheltens and Fazekas scores. Logistic regression analysis was used to identify the association of white matter lesions and clinical outcome, recanalization, and cerebral hemorrhage. The severity of white matter lesions was inversely correlated with favorable outcome, survival and successful recanalization. White matter lesions were an independent predictor of outcome (OR 0.569, p = 0.007) and survival (OR 0.550, p = 0.018) and a weak but independent predictor for recanalization (OR 0.949, p = 0.038). Asymptomatic intracerebral bleeding after IAT was associated with white matter lesions in the basal ganglia in the univariate analysis (p = 0.036), but not after multivariable analysis. The severity of white matter lesions independently predicts clinical outcome and survival in patients treated with IAT. White matter lesions are also a weak but independent predictor for recanalization. Symptomatic intracranial bleeding after IAT are not associated with white matter lesions. Therefore, white matter lesions should not be considered as a contraindication against IAT.
Resumo:
Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive “anticipatory imagery” at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in “training” frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.
Resumo:
The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.
Resumo:
Classical schizophrenia literature reports motor symptoms as characteristic of the disorder. After the introduction of neuroleptic drugs, the existence of genuine motor disorders was challenged. Renewed interest arose as symptoms were found in never-medicated patients. Reports focused on abnormal involuntary movements, parkinsonism, neurological soft signs, catatonia, negative symptoms, or psychomotor slowing. Since these syndromes refer to different concepts, however, the definitions are not congruent and the symptoms overlap. The prevalence rates of motor symptoms in schizophrenia are surprisingly high, and recent studies indicate a possible pathobiology. In particular, the development and maturation of the human motor system appears to be closely linked to the emergence of motor symptoms observed in schizophrenia. Post-mortem and neuroimaging results demonstrated aberrant structure and function of premotor and motor cortices, basal ganglia, thalamus, and the connecting white matter tracts. Animal models have focused on aberrant neurotransmission and genetic contributions. Findings of localized abnormal oligodendrocyte function and myelination point to the special role of the white matter in schizophrenia, and recent studies specifically found an association between motor abnormalities and white matter structure in schizophrenia. This review of the literature supports the idea that motor symptoms are closely related to the neurodevelopmental disturbances of schizophrenia and a distinct syndromal dimension with its own pathophysiology.
Resumo:
PURPOSE: We evaluated the impact of premature extrauterine life on brain maturation. PATIENTS AND METHODS: Twelve neonates underwent MR imaging at 40 (39.64 +/- 0.98) weeks (full term). Fifteen premature infants underwent 2 MR imaging examinations, after birth (preterm at birth) and at 40 weeks (41.03 +/- 1.33) (preterm at term). A 3D MR imaging technique was used to measure brain volumes compared with intracranial volume: total brain volume, cortical gray matter, myelinated white matter, unmyelinated white matter, basal ganglia (BG), and CSF. RESULTS: The average absolute volume of intracranial volume (269.8 mL +/- 36.5), total brain volume (246.5 +/- 32.3), cortical gray matter (85.53 mL +/- 22.23), unmyelinated white matter (142.4 mL +/-14.98), and myelinated white matter (6.099 mL +/-1.82) for preterm at birth was significantly lower compared with that for the preterm at term: the average global volume of intracranial volume (431.7 +/- 69.98), total brain volume (391 +/- 66,1), cortical gray matter (179 mL +/- 41.54), unmyelinated white matter (185.3 mL +/- 30.8), and myelinated white matter (10.66 mL +/- 3.05). It was also lower compared with that of full-term infants: intracranial volume (427.4 mL +/- 53.84), total brain volume (394 +/- 49.22), cortical gray matter (181.4 +/- 29.27), unmyelinated white matter (183.4 +/- 27.37), and myelinated white matter (10.72 +/- 4.63). The relative volume of cortical gray matter (30.62 +/- 5.13) and of unmyelinated white matter (53.15 +/- 4.8) for preterm at birth was significantly different compared with the relative volume of cortical gray matter (41.05 +/- 5.44) and of unmyelinated white matter (43.22 +/- 5.11) for the preterm at term. Premature infants had similar brain tissue volumes at 40 weeks to full-term infants. CONCLUSION: MR segmentation techniques demonstrate that cortical neonatal maturation in moderately premature infants at term and term-born infants was similar.
Resumo:
Surgery for Parkinson's Disease (PD) is being increasingly used. The main reason for this renewal in surgical treatment for PD is the "deep brain stimulation" (DBS) that replaced the previously used stereotactic lesions in most centers. DBS allows a focal specific electrical stimulation of basal ganglia target instead of an irreversible lesion. Mainly bilateral DBS of the nucleus subthalamicus is now an established surgical treatment for PD. But DBS of the Globus pallidus internus and of the thalamus should still be considered in selected patients. DBS is an efficient treatment for motor complication of PD that can no longer be controlled by drug treatment. Dyskinesia, bradykinesia, tremor and rigor can be improved by DBS and the medication can be reduced. It is still unclear, however, how the improvement in motor symptoms affects quality of life in the long term. Furthermore, patients with severe cognitive and psychiatric symptoms as well as patients with severe axial symptoms should not be operated since these symptoms may worsen after surgery.
Resumo:
Alzheimer's disease (AD) is known to cause a variety of disturbances of higher visual functions that are closely related to the neuropathological changes. Visual association areas are more affected than primary visual cortex. Additionally, there is evidence from neuropsychological and imaging studies during rest or passive visual stimulation that the occipitotemporal pathway is less affected than the parietal pathway. Our goal was to investigate functional activation patterns during active visuospatial processing in AD patients and the impact of local cerebral atrophy on the strength of functional activation. Fourteen AD patients and fourteen age-matched controls were measured with functional magnetic resonance imaging (fMRI) while they performed an angle discrimination task. Both groups revealed overlapping networks engaged in angle discrimination including the superior parietal lobule (SPL), frontal and occipitotemporal (OTC) cortical regions, primary visual cortex, basal ganglia, and thalamus. The most pronounced differences between the two groups were found in the SPL (more activity in controls) and OTC (more activity in patients). The differences in functional activation between the AD patients and controls were partly explained by the differences in individual SPL atrophy. These results indicate that parietal dysfunction in mild to moderate AD is compensated by recruitment of the ventral visual pathway. We furthermore suggest that local cerebral atrophy should be considered as a covariate in functional imaging studies of neurodegenerative disorders.
Resumo:
Dopamine deficiency in Parkinson's disease leads to numerous molecular changes in basal ganglia. However, the consequences of these changes on the motor cortex remain unclear. Here we show that the immunoreactivity of parvalbumin, which is expressed in GABAergic interneurons, increases in the primary motor cortex of parkinsonian rats. This increase can be reversed by a subsequent lesion of the subthalamic nucleus. These results suggest that dopamine deficiency induces reversible changes in GABAergic cortical cells, which might be linked with parkinsonian symptoms.
Resumo:
Hemispheric lateralization is well known in the cerebral cortex, but not in subcortical structures like basal ganglia. The goal of our study was to determine whether lateralization was present in the direct and indirect striatal pathways. We studied gene expression in the striatum of healthy rats, which was divided into two sectors, medial and lateral. Dynorphin (DYN) and enkephalin (ENK) mRNA were analyzed as markers of the direct and indirect striatal pathways, respectively and glutamic acid decarboxylase (GAD) mRNA was analyzed as a marker of all medium spiny neurons. DYN and GAD mRNA expression was higher on the left hemisphere in the medial sector of the striatum, but not in the lateral one. We did not observe any difference between sides with ENK mRNA expression. We suggest the presence of a lateralization in the medial striatum, which is specific for the direct striatal pathway.