810 resultados para Australian research
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
This paper investigates a mixed centralised-decentralised air traffic separation management system, which combines the best features of the centralised and decentralised systems whilst ensuring the reliability of the air traffic management system during degraded conditions. To overcome communication band limits, we propose a mixed separation manager on the basis of a robust decision (or min-max) problem that is posed on a reduced set of admissible flight avoidance manoeuvres (or a FAM alphabet). We also present a design method for selecting an appropriate FAM alphabet for use in the mixed separation management system. Simulation studies are presented to illustrate the benefits of our proposed FAM alphabet based mixed separation manager.
Resumo:
Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
This paper presents a solution to the problem of estimating the monotonous tendency of a slow-varying oscillating system. A recursive Prony Analysis (PA) scheme is developed which involves obtaining a dynamic model with parameters identified by implementing the forgetting factor recursive least square (FFRLS) method. A box threshold principle is proposed to separate the dominant components, which results in an accurate estimation of the trend of oscillating systems. Performance of the proposed PA is evaluated using real-time measurements when random noise and vibration effects are present. Moreover, the proposed method is used to estimate monotonous tendency of deck displacement to assist in a safe landing of an unmanned aerial vehicle (UAV). It is shown that the proposed method can estimate instantaneous mean deck satisfactorily, making it well suited for integration into ship-UAV approach and landing guidance systems.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
There is an increased interested in Uninhabited Aerial Vehicle (UAV) operations and research into advanced methods for commanding and controlling multiple heterogeneous UAVs. Research into areas of supervisory control has rapidly increased. Past research has investigated various approaches of autonomous control and operator limitation to improve mission commanders' Situation Awareness (SA) and cognitive workload. The aim of this paper is to address this challenge through a visualisation framework of UAV information constructed from Information Abstraction (IA). This paper presents the concept and process of IA, and the visualisation framework (constructed using IA), the concept associated with the Level Of Detail (LOD) indexing method, the visualisation of an example of the framework. Experiments will test the hypothesis that, the operator will be able to achieve increased SA and reduced cognitive load with the proposed framework.
Resumo:
The paper investigates two advanced Computational Intelligence Systems (CIS) for a morphing Unmanned Aerial Vehicle (UAV) aerofoil/wing shape design optimisation. The first CIS uses Genetic Algorithm (GA) and the second CIS uses Hybridized GA (HGA) with the concept of Nash-Equilibrium to speed up the optimisation process. During the optimisation, Nash-Game will act as a pre-conditioner. Both CISs; GA and HGA, are based on Pareto optimality and they are coupled to Euler based Computational Fluid Dynamic (CFD) analyser and one type of Computer Aided Design (CAD) system during the optimisation.
Resumo:
With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
This volume represents teh second collection of working papers and articles by participants in the Higher Education Policy Project (HEPP), a project funded by the Australian Research Council and based in the Graduate School of Education at the University of Queensland. The first volume, 'Higher Education in Transition: Working Papers of the Higher Education Policy Project (Bella, McCollow and Knight, 1993), took the broad theme of "higher education in transition" in order to introduce readers the HEPP and give them some idea of the breadth of the research being pursued by the HEPP research team itself and by the cohort of post-graduate students also associated with the project. Since then, higher education has remained in transition. Stubborn and resurgent questions continue: such as what a university ought to be, what forms of research should be supported in a mass system, and how institutional accountability can be demonstrated. In differing ways and using a variety of research perspectives and methodologies, the contributors to this volume explore these and other questions of relevance to higher education today.
Resumo:
This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.