982 resultados para Augmented Lagrangian method
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The Tree Augmented Naïve Bayes (TAN) classifier relaxes the sweeping independence assumptions of the Naïve Bayes approach by taking account of conditional probabilities. It does this in a limited sense, by incorporating the conditional probability of each attribute given the class and (at most) one other attribute. The method of boosting has previously proven very effective in improving the performance of Naïve Bayes classifiers and in this paper, we investigate its effectiveness on application to the TAN classifier.
Resumo:
Cikkünkben a magyar monetáris politikát vizsgáljuk olyan szempontból, hogy kamatdöntései meghozatalakor figyelembe vette-e az országkockázatot, és ha igen, hogyan. A kérdés megválaszolásához a monetáris politika elemzésének leggyakoribb eszközét használjuk: az ország monetáris politikáját leíró Taylor-szabályokat becslünk. A becslést több kockázati mérőszámmal is elvégeztük több, különféle Taylor-szabályt használva. Az érzékenységvizsgálatban az inflációhoz és a kibocsátási réshez is alkalmaztunk más, az alapspecifikációban szereplőtől eltérő mérőszámokat. Eredményeink szerint a Magyar Nemzeti Bank kamatdöntései jól leírhatók egy rugalmas, inflációs célkövető rezsimmel: a Taylor-szabályban szignifikáns szerepe van az inflációs céltól való eltérésének és - a szabályok egy része esetén - a kibocsátási résnek. Emellett a döntéshozók figyelembe vették az országkockázatot is, annak növekedésére a kamat emelésével válaszoltak. Az országkockázat Taylor-szabályba történő beillesztése a megfelelő kockázati mérőszám kiválasztása esetén jelentős mértékben képes javítani a Taylor-szabály illeszkedését. _____ The paper investigates the degree to which Hungarian monetary policy has considered country risk in its decisions and if so, how. The answer was sought through the commonest method of analysing a countrys monetary policy: Taylor rules for describing it. The estimation of the rule was prepared using several risk indicators and applying various types of Taylor rules. As a sensitivity analysis, other indicators of inflation and output gap were employed than in the base rule. This showed that the interest-rate decisions of the National Bank of Hungary can be well described by a flexible inflation targeting regime: in the Taylor rules, deviation of inflation from its target has a significant role and the output gap is also significant in one part of the rules. The decision-makers also considered country risk and responded to an increase in it by raising interest rates. Insertion of country risk into the Taylor rule could improve the models fit to an important degree when choosing an appropriate risk measure.
Resumo:
The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.
Resumo:
The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.
Resumo:
Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.
Resumo:
This dissertation research project uses the Euromaidan protests in Ukraine to inform and shape a theory of augmented dissent to help explain the complex ways in which protest participants guided by the political, social, and cultural contexts engage in dissent augmented by ICTs in a reality where both the physical and the digital are used in concert. The purpose of this research is to conceptualize the use and perception of ICTs in protest activity using the communicative affordances framework. Through a mixed-method research approach involving interviews with protest participants, as well as qualitative and thematic analysis of online content from social media pages of several key Euromaidan protest communities, the research project examines the role ICTs played in the information and media landscape during the Euromaidan protest. The findings of the online content analysis were used to inform the questions for the 59 semi-structured, open-ended interviews with Euromaidan protest participants in Ukraine and abroad. The research findings provide in-depth insights about how ICTs were used and perceived by protest participants, and their role as vehicles for information and civic media content. The study employs the theoretical framework of social media affordances to interpret the data gathered during the interviews and content analysis to better understand how digital media augmented citizens’ protest activity through affording them new possibilities for dissent, and how they made meaning of said protest activity as augmented by ICTs. The findings contribute towards shaping a theory of digitally augmented dissent that conceptualizes the complex relationship between citizens and ICTs during protest activity as an affordance-driven one, where online and offline tools and activity merge into a unified dissent space and extend or augment the possibilities for action in interesting, and sometimes unexpected ways. Such a conceptual model could inform broader theories about civic participation and digital activism in the post-Soviet world and beyond, as ICTs become an inseparable part of civic life.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.