993 resultados para Artificial reef
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
Non-use values (i.e. economic values assigned by individuals to ecosystem goods and services unrelated to current or future uses) provide one of the most compelling incentives for the preservation of ecosystems and biodiversity. Assessing the non-use values of non-users is relatively straightforward using stated preference methods, but the standard approaches for estimating non-use values of users (stated decomposition) have substantial shortcomings which undermine the robustness of their results. In this paper, we propose a pragmatic interpretation of non-use values to derive estimates that capture their main dimensions, based on the identification of a willingness to pay for ecosystem protection beyond one's expected life. We empirically test our approach using a choice experiment conducted on coral reef ecosystem protection in two coastal areas in New Caledonia with different institutional, cultural, environmental and socio-economic contexts. We compute individual willingness to pay estimates, and derive individual non-use value estimates using our interpretation. We find that, a minima, estimates of non-use values may comprise between 25 and 40% of the mean willingness to pay for ecosystem preservation, less than has been found in most studies.
Resumo:
This is a report of a musical theatre production performed at QUT Gardens Point Campus in November 2014 for the occasion of the end of year Annual Art Exhibition and concert of the Post graduate research students. Both the performance and the exhibition focused on environmental issues especially in relation to coal and coral in Queensland. The poster was prepared by Stephen Bennett former student in Creative Industries.
Resumo:
The focus of this paper is on two World Heritage Areas: the Great Barrier Reef in Queensland, Australia and the Everglades in Florida. While both are World Heritage listed by the UNESCO, the Everglades is on the "World Heritage in Danger" list and the Great Barrier Reef could be on this list within the next year if present pressures continue. This paper examines the planning approaches and governance structures used in these two areas (Queensland and Florida) to manage the growth and development pressures. To make the analysis manageable, given the scale of these World Heritage areas, case studies at the local government level will be used: the Cairns Regional Council in Queensland and Monroe County in Florida. The case study analysis will involve three steps: (1) examination of the various plans at the federal, state, local levels that impact upon environmental quality in the Great Barrier Reef and Everglades; (2) assessing the degree to which these plans have been implemented; and (3) determine if (and how) the plans have improved environmental quality. In addition to the planning analysis we will also examine the governance structures (Lebel et al. 2006) within which planning operates. In any comparative analysis context is important (Hantrais 2009). Contextual differences between Queensland and Florida have previously been examined by Sipe, et al. (2007) and will be used as the starting point for this analysis. Our operating hypothesis and preliminary analysis suggests that the planning approaches and governance structures used in Florida and Queensland are considerably different, but the environmental outcomes may be similar. This is based, in part, on Vella (2004) who did a comparative analysis of environmental practices in the sugar industry in Florida and Queensland. This research re-examines this hypothesis and broadens the focus beyond the sugar industry to growth and development more broadly.
Resumo:
This is a musical theatre production with an environmental message addressing a Queensland, Australia tussle between the development of the Galilee Coal Basin and the potential threat to the health of the Great Barrier Reef along the Queensland coast. The drama is enacted by characters representing "goodies" and "baddies" and includes epic poetry, dance, orchestra and drama. The whole performance is enacted in the midst of a post graduate student art exhibition with a coral and coal theme.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
This article examines the emerging area of civic crowdfunding, a subset of crowdfunding, as a means of financing public interest environmental litigation. The literature surrounding civic crowdfunding and third party litigation funding is currently underdeveloped. The link between those areas and public interest environmental litigation takes a further step into the unknown. As a case study, the Sea Dumping Case presents exciting opportunities for civil society and access to justice, but further research is needed before any firm conclusions can be drawn.
Resumo:
This project was a step forward in applying statistical methods and models to provide new insights for more informed decision-making at large spatial scales. The model has been designed to address complicated effects of ecological processes that govern the state of populations and uncertainties inherent in large spatio-temporal datasets. Specifically, the thesis contributes to better understanding and management of the Great Barrier Reef.
Resumo:
In fisheries managed using individual transferable quotas (ITQs) it is generally assumed that quota markets are well-functioning, allowing quota to flow on either a temporary or permanent basis to those able to make best use of it. However, despite an increasing number of fisheries being managed under ITQs, empirical assessments of the quota markets that have actually evolved in these fisheries remain scarce. The Queensland Coral Reef Fin-Fish Fishery (CRFFF) on the Great Barrier Reef has been managed under a system of ITQs since 2004. Data on individual quota holdings and trades for the period 2004-2012 were used to assess the CRFFF quota market and its evolution through time. Network analysis was applied to assess market structure and the nature of lease-trading relationships. An assessment of market participants’ abilities to balance their quota accounts, i.e., gap analysis, provided insights into market functionality and how this may have changed in the period observed. Trends in ownership and trade were determined, and market participants were identified as belonging to one out of a set of seven generalized types. The emergence of groups such as investors and lease-dependent fishers is clear. In 2011-2012, 41% of coral trout quota was owned by participants that did not fish it, and 64% of total coral trout landings were made by fishers that owned only 10% of the quota. Quota brokers emerged whose influence on the market varied with the bioeconomic conditions of the fishery. Throughout the study period some quota was found to remain inactive, implying potential market inefficiencies. Contribution to this inactivity appeared asymmetrical, with most residing in the hands of smaller quota holders. The importance of transaction costs in the operation of the quota market and the inequalities that may result are discussed in light of these findings
Resumo:
This report provides an evaluation of the implementation of the Polluter Pays Principle (PPP) – a principle of international environmental law – in the context of pollution from sugarcane farming affecting Australia’s Great Barrier Reef (GBR). The research was part of an experiment to test methods for evaluating the effectiveness of environmental laws. Overall, we found that whilst the PPP is reflected to a limited extent in Australian law (more so in Queensland law, than at the national level), the behaviour one might expect in terms of implementing the principle was largely inadequate. Evidence of a longer term, explicit commitment to the PPP was particularly weak.