902 resultados para Application method
Resumo:
Contribution from Production and Marketing Administration.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
The buffer allocation problem (BAP) is a well-known difficult problem in the design of production lines. We present a stochastic algorithm for solving the BAP, based on the cross-entropy method, a new paradigm for stochastic optimization. The algorithm involves the following iterative steps: (a) the generation of buffer allocations according to a certain random mechanism, followed by (b) the modification of this mechanism on the basis of cross-entropy minimization. Through various numerical experiments we demonstrate the efficiency of the proposed algorithm and show that the method can quickly generate (near-)optimal buffer allocations for fairly large production lines.
Resumo:
This article first summarizes some available experimental results on the frictional behaviour of contact interfaces, and briefly recalls typical frictional experiments and relationships, which are applicable for rock mechanics, and then a unified description is obtained to describe the entire frictional behaviour. It is formulated based on the experimental results and applied with a stick and slip decomposition algorithm to describe the stick-slip instability phenomena, which can describe the effects observed in rock experiments without using the so-called state variable, thus avoiding related numerical difficulties. This has been implemented to our finite element code, which uses the node-to-point contact element strategy proposed by the authors to handle the frictional contact between multiple finite-deformation bodies with stick and finite frictional slip, and applied here to simulate the frictional behaviour of rocks to show its usefulness and efficiency.
Resumo:
Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Synchronous reluctance motors (SynRMs) are gaining in popularity in industrial drives due to their permanent magnet-free, competitive performance, and robust features. This paper studies the power losses in a 90-kW converter-fed SynRM drive by a calorimetric method in comparison of the traditional input-output method. After the converter and the motor were measured simultaneously in separate chambers, the converter was installed inside the large-size chamber next to the motor and the total drive system losses were obtained using one chamber. The uncertainty of both measurement methods is analyzed and discussed.
Resumo:
A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.
Resumo:
In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.