988 resultados para Amplificação de genes
Resumo:
Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.
Resumo:
Age at puberty is an important component of reproductive performance in beef cattle production systems. Brahman cattle are typically late-pubertal relative to Bos taurus cattle and so it is of economic relevance to select for early age at puberty. To assist selection and elucidate the genes underlying puberty, we performed a genome-wide association study (GWAS) using the BovineSNP50 chip (similar to 54 000 polymorphisms) in Brahman bulls (n = 1105) and heifers (n = 843) and where the heifers were previously analysed in a different study. In a new attempt to generate unbiased estimates of single-nucleotide polymorphism (SNP) effects and proportion of variance explained by each SNP, the available data were halved on the basis of year and month of birth into a calibration and validation set. The traits that defined age at puberty were, in heifers, the age at which the first corpus luteum was detected (AGECL, h(2) = 0.56 +/- 0.11) and in bulls, the age at a scrotal circumference of 26 cm (AGE26, h(2) = 0.78 +/- 0.10). At puberty, heifers were on average older (751 +/- 142 days) than bulls (555 +/- 101 days), but AGECL and AGE26 were genetically correlated (r = 0.20 +/- 0.10). There were 134 SNPs associated with AGECL and 146 SNPs associated with AGE26 (P < 0.0001). From these SNPs, 32 (similar to 22%) were associated (P < 0.0001) with both traits. These top 32 SNPs were all located on Chromosome BTA 14, between 21.95 Mb and 28.4 Mb. These results suggest that the genes located in that region of BTA 14 play a role in pubertal development in Brahman cattle. There are many annotated genes underlying this region of BTA 14 and these are the subject of current research. Further, we identified a region on Chromosome X where markers were associated (P < 1.00E-8) with AGE26, but not with AGECL. Information about specific genes and markers add value to our understanding of puberty and potentially contribute to genomic selection. Therefore, identifying these genes contributing to genetic variation in AGECL and AGE26 can assist with the selection for early onset of puberty.
Resumo:
Endometriosis is a complex disease involving multiple susceptibility genes and environmental factors. Our previous studies on endometriosis identified a region of significant linkage on chromosome 10q. Two biological candidate genes (CYP17A1 and IFIT1) located on chromosome 10q, have previously been implicated in endometriosis and/or uterine function. We hypothesized that variation in CYP17A1 and/or IFIT1 could contribute to the risk of endometriosis and may account for some of the linkage signal on chromosome 10q. We genotyped 17 single nucleotide polymorphisms (SNPs) in the CYP17A1 and IFIT1 genes including SNP rs743572 previously associated with endometriosis in 768 endometriosis cases and 768 unrelated controls. We found no evidence for association between endometriosis and individual SNPs or SNP haplotypes in CYP17A1 and IFIT1. Common variation in these genes does not appear to be a major contributor to endometriosis susceptibility in our Australian sample.
Resumo:
The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case-control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case-control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out.
Resumo:
BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.
Resumo:
Pectobacterium atrosepticum on Gram-negatiivinen bakteeri, joka aiheuttaa perunan tyvi- ja märkämätää. P. atrosepticum bakteerin optimilämpötila on melko alhainen ja se on yleinen lauhkeilla alueilla. Tyvimätä leviää pääasiassa siemenperunan välityksellä ja siksi se on ongelma erityisesti siemenperunan tuotannossa. P. atrosepticum kannan SCRI1043 genomi on julkaistu ja sitä tutkitaan malliorganismina märkä- ja tyvimädän taudinaiheuttamisen ymmärtämiseksi. Tämä opportunistinen taudinaiheuttaja voi elää isäntäkasvissa kuukausia piilevänä, aiheuttamatta näkyviä oireita. Suotuisissa olosuhteissa bakteerit alkavat jakautua ja tuottaa kasvin kudoksia hajottavia entsyymejä. Mädäntyvä kasvimassa tarjoaa ravinteita bakteerien kasvuun ja mahdollistaa isäntäkasvin asuttamisen. Soluseiniä hajottavien entsyymien merkitys taudinaiheuttamisessa on hyvin tunnettu, mutta oireettomasta jaksosta ja taudin alkuvaiheista tiedätään vain vähän. Bakteerin genomi sisältää monia toksiineja, adhesiineja, hemolysiineja ja muita proteiineja, joilla saattaa olla merkitys taudinaiheuttamisessa. Tässä työssä käytettiin proteomiikkaa ja mikrosiruanalysiä P. atrosepticum bakteerin erittyvien proteiinien ja geeniekspression tutkimiseen. Proteiinit, jotka eritetään ulos bakteerista, toimivat todennäköisesti taudinaiheuttamisessa, koska ne ovat suorassa kontaktissa isäntäkasvin kanssa. Analyysit suoritettiin olosuhteissa, jotka muistuttavat kasvin soluvälitilaa: matala pH, vähän ravinteita ja matala lämpötila. Isäntäkasvin läsnäolon vaikutusta proteiinien tuottoon ja geeniekspressioon tutkittiin lisäämällä perunauutetta kasvatusalustaan. Tutkimuksessa tunnistettiin P. atrosepticum bakteerin monia jo tunnettuja ja mahdollisesti taudinaiheuttamiseen liittyviä proteiineja. Perunauute lisäsi hiljattain tunnistetun, proteiinien eritysreittiä (tyyppi VI sekreetio, T6SS) koodaavien geenien ilmentymistä. Lisäksi bakteerin havaittiin erittävän useita T6SS:n liittyviä proteiineja kasvualustaan, johon oli lisätty perunauutetta. T6SS:n merkitys bakteereille on vielä epäselvä ja sen vaikutuksesta taudinaiheuttamiseen on julkaistu ristiriitaisia tuloksia. Märkä- ja tyvimädän ymmärtäminen molekulaarisella tasolla luo pohjan tautien kontrollointiin tähtäävään soveltavaan tutkimukseen. Tämä tutkimus lisää tietoa kasvi-patogeeni- interaktiosta ja sitä voidaan tulevaisuudessa käyttää hyväksi esimerkiksi diagnostiikassa, resistenttien perunalajikkeiden jalostuksessa tai viljely- ja varastointiolosuhteiden parantamisessa.
Resumo:
Mass occurrences (blooms) of cyanobacteria are common in aquatic environments worldwide. These blooms are often toxic, due to the presence of hepatotoxins or neurotoxins. The most common cyanobacterial toxins are hepatotoxins: microcystins and nodularins. In freshwaters, the main producers of microcystins are Microcystis, Anabaena, and Planktothrix. Nodularins are produced by strains of Nodularia spumigena in brackish waters. Toxic and nontoxic strains of cyanobacteria co-occur and cannot be differentiated by conventional microscopy. Molecular biological methods based on microcystin and nodularin synthetase genes enable detection of potentially hepatotoxic cyanobacteria. In the present study, molecular detection methods for hepatotoxin-producing cyanobacteria were developed, based on microcystin synthetase gene E (mcyE) and the orthologous nodularin synthetase gene F (ndaF) sequences. General primers were designed to amplify the mcyE/ndaF gene region from microcystin-producing Anabaena, Microcystis, Planktothrix, and Nostoc, and nodularin-producing Nodularia strains. The sequences were used for phylogenetic analyses to study how cyanobacterial mcy genes have evolved. The results showed that mcy genes and microcystin are very old and were already present in the ancestor of many modern cyanobacterial genera. The results also suggested that the sporadic distribution of biosynthetic genes in modern cyanobacteria is caused by repeated gene losses in the more derived lineages of cyanobacteria and not by horizontal gene transfer. Phylogenetic analysis also proposed that nda genes evolved from mcy genes. The frequency and composition of the microcystin producers in 70 lakes in Finland were studied by conventional polymerase chain reaction (PCR). Potential microcystin producers were detected in 84% of the lakes, using general mcyE primers, and in 91% of the lakes with the three genus-specific mcyE primers. Potential microcystin-producing Microcystis were detected in 70%, Planktothrix in 63%, and Anabaena in 37% of the lakes. The presence and co-occurrence of potential microcystin producers were more frequent in eutrophic lakes, where the total phosphorus concentration was high. The PCR results could also be associated with various environmental factors by correlation and regression analyses. In these analyses, the total nitrogen concentration and pH were both associated with the presence of multiple microcystin-producing genera and partly explained the probability of occurrence of mcyE genes. In general, the results showed that higher nutrient concentrations increased the occurrence of potential microcystin producers and the risk for toxic bloom formation. Genus-specific probe pairs for microcystin-producing Anabaena, Microcystis, Planktothrix, and Nostoc, and nodularin-producing Nodularia were designed to be used in a DNA-chip assay. The DNA-chip can be used to simultaneously detect all these potential microcystin/nodularin producers in environmental water samples. The probe pairs detected the mcyE/ndaF genes specifically and sensitively when tested with cyanobacterial strains. In addition, potential microcystin/nodularin producers were identified in lake and Baltic Sea samples by the DNA-chip almost as sensitively as by quantitative real-time PCR (qPCR), which was used to validate the DNA-chip results. Further improvement of the DNA-chip assay was achieved by optimization of the PCR, the first step in the assay. Analysis of the mcy and nda gene clusters from various hepatotoxin-producing cyanobacteria was rewarding; it revealed that the genes were ancient. In addition, new methods detecting all the main producers of hepatotoxins could be developed. Interestingly, potential microcystin-producing cyanobacterial strains of Microcystis, Planktothrix, and Anabaena, co-occurred especially in eutrophic and hypertrophic lakes. Protecting waters from eutrophication and restoration of lakes may thus decrease the prevalence of toxic cyanobacteria and the frequency of toxic blooms.
Resumo:
Background and Objective: Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular b asis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes.Material and Methods:Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription-polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation.Results:Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase.Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes.
Resumo:
Presence of the dw3 sorghum dwarfing gene had negative effects on grain yield in some genetic backgrounds and environments. In a previous study we showed that this was due to a significant reduction in shoot biomass (mainly via reduced stem mass), which in turn negatively affected grain size. The current study examines whether shoot biomass was reduced via effects of dw3 on traits associated with resource capture, such as leaf area index (LAI), light interception (LI), and canopy extinction coefficient (k) or with resource use efficiency, such as radiation use efficiency (RUE). Three pairs of near-isogenic sorghum lines differing only in the presence or absence of the dwarfing allele dw3 (3-dwarfs vs 2-dwarfs) were grown in large field plots. Biomass accumulation and LI were measured for individual canopy layers to examine canopy characteristics of tall and short types. Similar to the previously reported effects on grain yield, the effects of dw3 on RUE, LI and k varied among genetic backgrounds and environments. Interactions between dw3 and genetic background, but also interactions with environment are likely to have modulated the extent to which RUE, LI, or k contributed to biomass differences between tall and short sorghum. © 2013 .
Resumo:
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.