968 resultados para Amount of substance
Resumo:
This research examines the entrepreneurship phenomenon, and the question: Why are some venture attempts more successful than others? This question is not a new one. Prior research has answered this by describing those that engage in nascent entrepreneurship. Yet, this approach yielded little consensus and offers little comfort for those newly considering venture creation (Gartner, 1988). Rather, this research considers the process of venture creation, by focusing on the actions of nascent entrepreneurs. However, the venture creation process is complex (Liao, Welsch, & Tan, 2005), and multi-dimensional (Davidsson, 2004). The process can vary in the amount of action engaged by the entrepreneur; the temporal dynamics of how action is enacted (Lichtenstein, Carter, Dooley, and Gartner 2007); or the sequence in which actions are undertaken. And little is known about whether any, or all three, of these dimensions matter. Further, there exists scant general knowledge about how the venture creation process influences venture creation outcomes (Gartner & Shaver, 2011). Therefore, this research conducts a systematic study of what entrepreneurs do as they create a new venture. The primary goal is to develop general principles so that advice may be offered on how to ‘proceed’, rather than how to ‘be’. Three integrated empirical studies were conducted that separately focus on each of the interrelated dimensions. The basis for this was a randomly sampled, longitudinal panel, of nascent ventures. Upon recruitment these ventures were in the process of being created, but yet to be established as new businesses. The ventures were tracked one year latter to follow up on outcomes. Accordingly, this research makes the following original contributions to knowledge. First, the findings suggest that all three of the dimensions play an important role: action, dynamics, and sequence. This implies that future research should take a multi-dimensional view of the venture creation process. Failing to do so can only result in a limited understanding of a complex phenomenon. Second, action is the fundamental means through which venture creation is achieved. Simply put, more active venture creation efforts are more likely more successful. Further, action is the medium which allows resource endowments their effect upon venture outcomes. Third, the dynamics of how venture creation plays out over time is also influential. Here, a process with a high rate of action which increases in intensity will more likely achieve positive outcomes. Forth, sequence analysis, suggests that the order in which actions are taken will also drive outcomes. Although venture creation generally flows in sequence from discovery toward exploitation (Shane & Venkataraman, 2000; Eckhardt & Shane, 2003; Shane, 2003), processes that actually proceed in this way are less likely to be realized. Instead, processes which specifically intertwine discovery and exploitation action together in symbiosis more likely achieve better outcomes (Sarasvathy, 2001; Baker, Miner, & Eesley, 2003). Further, an optimal venture creation order exists somewhere between these sequential and symbiotic process archetypes. A process which starts out as symbiotic discovery and exploitation, but switches to focus exclusively on exploitation later on is most likely to achieve venture creation. These sequence findings are unique, and suggest future integration between opposing theories for order in venture creation.
Resumo:
Background Anxiety, depressive and substance use disorders account for three quarters of the disability attributed to mental disorders and frequently co-occur. While programs for the prevention and reduction of symptoms associated with (i) substance use and (ii) mental health disorders exist, research is yet to determine if a combined approach is more effective. This paper describes the study protocol of a cluster randomised controlled trial to evaluate the effectiveness of the CLIMATE Schools Combined intervention, a universal approach to preventing substance use and mental health problems among adolescents. Methods/design Participants will consist of approximately 8400 students aged 13 to 14-years-old from 84 secondary schools in New South Wales, Western Australia and Queensland, Australia. The schools will be cluster randomised to one of four groups; (i) CLIMATE Schools Combined intervention; (ii) CLIMATE Schools - Substance Use; (iii) CLIMATE Schools - Mental Health, or (iv) Control (Health and Physical Education as usual). The primary outcomes of the trial will be the uptake and harmful use of alcohol and other drugs, mental health symptomatology and anxiety, depression and substance use knowledge. Secondary outcomes include substance use related harms, self-efficacy to resist peer pressure, general disability, and truancy. The link between personality and substance use will also be examined. Discussion Compared to students who receive the universal CLIMATE Schools - Substance Use, or CLIMATE Schools - Mental Health or the Control condition (who received usual Health and Physical Education), we expect students who receive the CLIMATE Schools Combined intervention to show greater delays to the initiation of substance use, reductions in substance use and mental health symptoms, and increased substance use and mental health knowledge
Resumo:
In Baker Johnson Lawyers v Jorgensen [2002] QDC 205 McGill DCJ considered the meaning of a 'no win, no fee' retainer and concluded that, in the absence of qualification by agreement, solicitors retained on that basis were not entitled to recover costs exceeding the amount of any judgment or settlement.
Resumo:
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.
Resumo:
Prison substance use is a major concern for prison authorities and the wider community. Australia has responded to this problem by implementing the National Corrections Drug Strategy. Across Australia, the true extent of prison substance use cannot be determined. As a result, the effectiveness of the interventions employed as part of this strategy cannot be properly assessed. This has important implications for the allocation of corrective services resources and future policy development. This article explores the benefits and limitations, as well as the ethical and practical issues in using wastewater analysis (WWA) to measure levels of substance use in prisons. It reports results from the first application of WWA to an Australian prison, which supports the use of WWA in this context. Given the increasing concern for prescription misuse in prisons, we also highlight the novel use of WWA to measure the extent of prescription misuse by prisoners. The article concludes that as a result of its objectivity, sensitivity and cost-effectiveness, the use of WWA in prisons warrants further consideration in Australia.
Resumo:
Early-onset psychiatric illnesses effects scatter to academic achievements as well as functioning in familial and social environments. From a public health point of view, depressive disorders are the most significant mental health disorders that begin in adolescence. Using prospective and longitudinal design, this study aimed to increase the understanding of early-onset depressive disorders, related mental health disorders and developing substance use in a large population-derived sample of adolescent Finnish twins. The participants of this study, FinnTwin12, an ongoing longitudinal population-based study, came from Finnish families with twins born in 1983-87 (exhaustive of five birth cohorts, identified from Finland s Central Population Register). With follow-up ongoing at age 20-24, this thesis assessed adolescent mental health in the first three waves, starting from baseline age 11-12 to follow-ups at age 14 and 17½. Some 5600 twins participated in questionnaire assessments of a wide range of health related behaviors. Mental health was further assessed among an intensively studied subsample of 1852 adolescents, who completed also professionally administered interviews at age 14, which provided data for full DSM-IV/III-R (Diagnostic and Statistical Manual for Mental Health disorders, 4th and 3rd editions) diagnoses. The participation rates of the study were 87-92%. The results of the study suggest, that the diagnostic criteria for major depressive disorder (MDD) may not capture youth with clinically significant early-onset depressive conditions outside clinical settings. Milder cases of depression, namely adolescents fulfilling the diagnostic criteria for minor depressive disorder, a qualitatively similar condition to MDD with fewer symptoms are also associated with marked suicidal thoughts, plans and attempts, recurrences and a high degree of comorbidity. Prospectively and longitudinally, early-onset depressive disorders were of substantial importance in the context of other mental health disorders and substance use behaviors: These data from a large population-derived sample established a substantial overlap between early-onset depressive disorders and attention deficit hyperactivity disorder in adolescent females, both of them significantly predictive for development of substance use among girls. Only in females baseline DSM-IV ADHD symptoms were strong predictors of alcohol abuse and dependence and illicit drug use at age 14 and frequent alcohol use and illicit drug use at age 17.½ when conduct disorder and previous substance use were controlled for. Early-onset depressive disorders were also prospectively and longitudinally associated to daily smoking behavior, smokeless tobacco use, frequent alcohol use and illicit drug use and eating disorders. Analysis of discordant twins suggested that these predictive associations were independent of familial confounds, such as family income, structure and parental models. In sum, early-onset depressive disorders predict subsequent involvement of substance use and psychiatric morbidity. A heightened risk for substance use is substantial also among those depressed below categorical diagnosis of MDD. Whether early recognition and interventions among these young people hold potential for substance use prevention further in their lives has potential public health significance and calls for more research. Data from this population-derived sample with balanced representation of boys and girls, suggested that boys and girls with ADHD behaviors may differ from each other in their vulnerability to substance use and depressive disorders: the data suggest more adverse substance use outcome for girls that was not attenuated by conduct disorder or previous substance use. Further, the prospective associations of early-onset depressive disorders and future elevated levels of addictive substance use is not explained by familial factors supporting future substance use, which could have important implications for substance use prevention.
Resumo:
Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.
Resumo:
The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.
Resumo:
The need to address substance use among people with psychosis has been well established. However, treatment studies targeting substance use in this population have reported mixed results. Substance users with psychosis in no or minimal treatment control groups achieve similar reductions in substance use compared to those in more active substance use treatment, suggesting a role for natural recovery from substance use. This meta-analysis aims to quantify the amount of natural recovery from substance use within control groups of treatment studies containing samples of psychotic substance users, with a particular focus on changes in cannabis use. A systematic search was conducted to identify substance use treatment studies. Meta-analyses were performed to quantify reductions in the frequency of substance use in the past 30 days. Significant but modest reductions (mean reduction of 0.3–0.4 SD across the time points) in the frequency of substance use were found at 6 to 24 months follow up. The current study is the first to quantify changes in substance use in samples enrolled in no treatment or minimal treatment control conditions. These findings highlight the potential role of natural recovery from substance use among individuals with psychosis, although they do not rule out effects of regression to the mean. Additionally, the results provide a baseline from which to estimate likely changes or needed effects sizes in intervention studies. Future research is required to identify the processes underpinning these changes, in order to identify strategies that may better support self-management of substance use in people with psychosis.
Resumo:
Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance and lifetime and cause contamination and impaired quality of the industrial product. In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised species isolated from medical implants (Staphylococcus epidermidis). We found that coating of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer and DLC coatings repelled all four biofilm formers on steel. We found great differences between bacterial species in their preference of surfaces to adhere as well as their ultrastructural details, like number and thickness of adhesion organelles they expressed. These details responded differently towards the different surfaces they adhered to. We further found that biofilms of D. geothermalis formed on titanium dioxide coated coupons of glass, steel and titanium, were effectively removed by photocatalytic action in response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation had no detectable effect on the amount of bacterial biomass. We showed that the adhesion organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas on non-coated coupons they looked intact when observed by microscope. Stainless steel is the most widely used material for industrial process equipments and surfaces. The results in this thesis showed that stainless steel is prone to biofouling by phylogenetically distant bacterial species and that coating of the steel may offer a tool for reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential technique for biofilm removal from surfaces in locations where high level of hygiene is required. Our study of natural biofilms on barley kernel surfaces showed that also there the microbes possessed adhesion organelles visible with electronmicroscope both before and after steeping. The microbial community of dry barley kernels turned into a dense biofilm covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in water. Steeping is the first step in malting. We also presented evidence showing that certain strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter cultures in the steeping water, could enter the barley kernel and colonise the tissues of the barley kernel. By use of a starter culture it was possible to reduce the extensive production of EPS, which resulted in a faster filtration of the mash.
Resumo:
The study aimed to find a cheap and practical method of extracting mimosine from Leucaena leucocephala, otherwise known as ipil-ipil in the Philippines. L. leucocephala leaves are used in cattle, poultry and swine feed and have been tried as a food ingredient in some fish diets. While it contains relatively high amount of protein, its use as feed has been limited because of the presence of toxic substance, mimosine. Findings revealed that soaking the leaves in water was highly efficient for the extraction of mimosine, the longer the duration of soaking the more mimosine was extracted. On the other hand, 87 % of the juveniles Penaeus monodon fed with diets containing L. leucocephala leaves soaked for 24 hours survived, much higher compared to those that were fed with unsoaked leaves for eight weeks.
Resumo:
The corrosion behaviour of titanium substance and the XPS characterization of Ti surface in the H2C2O4 solution have been first studied by X-ray photoelectron spectroscopy, The experimental results show that there am mile Ti-2 and Ti2+ on sample surface in 10% H2C2O4 solution for two boars corrosion at 80 degrees C, but if corrosion is extended to 4 hones, the surface composition is mainly TiO2 with a small amount of Ti2+. This result corresponds to the structure of TiH1.642 composion in sample surface found by XRD analysis. Since bath TiO2 and the surface coating RuO2 are of Gald-Redstone structure, therefore electrode materials of Ti-Ru are stable in chemical industry.
Resumo:
Co-occurrence of HIV and substance abuse is associated with poor outcomes for HIV-related health and substance use. Integration of substance use and medical care holds promise for HIV patients, yet few integrated treatment models have been reported. Most of the reported models lack data on treatment outcomes in diverse settings. This study examined the substance use outcomes of an integrated treatment model for patients with both HIV and substance use at three different clinics. Sites differed by type and degree of integration, with one integrated academic medical center, one co-located academic medical center, and one co-located community health center. Participants (n=286) received integrated substance use and HIV treatment for 12 months and were interviewed at 6-month intervals. We used linear generalized estimating equation regression analysis to examine changes in Addiction Severity Index (ASI) alcohol and drug severity scores. To test whether our treatment was differentially effective across sites, we compared a full model including site by time point interaction terms to a reduced model including only site fixed effects. Alcohol severity scores decreased significantly at 6 and 12 months. Drug severity scores decreased significantly at 12 months. Once baseline severity variation was incorporated into the model, there was no evidence of variation in alcohol or drug score changes by site. Substance use outcomes did not differ by age, gender, income, or race. This integrated treatment model offers an option for treating diverse patients with HIV and substance use in a variety of clinic settings. Studies with control groups are needed to confirm these findings.
Resumo:
The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide(CGRP) was confined to the major longitudinal nerve cords.