952 resultados para Ammonium chloride


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a previous work (Nicu et al. 2013), the flocculation efficiency of three chitosans differing by molecular weight and charge density were evaluated for their potential use as wet end additives in papermaking. According to the promising results obtained, chitosan (single system) and its combination with bentonite (dual system) were evaluated as retention aids, and their efficiency was compared with poly(diallyl dimethyl ammonium chloride) (PDADMAC) and polyethylenimine (PEI). In single systems, chitosan was clearly more efficient in drainage rate than PDADMAC and PEI, especially those with the lowest molecular weights; however, retention is considerably lower. This drawback can be overcome by using dual systems with anionic bentonite microparticles, with the optimum ratio of polymer:bentonite being 1:4 (wt./wt.). In dual systems, the differences in retention were almost negligible, and the difference in drainage rate was even higher, together with better floc reversibility. The most efficient chitosan in single systems was Ch.MMW, while Ch.LMW was the most efficient in dual systems. The flocculation mechanism of chitosan was a combination of patch formation, charge neutralization, and partial bridge formation, and the predominant mechanism depended on the molecular weight and charge density of the chitosan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH(4))(2)SO(4) fed-hatch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 mu mol-photons/m(2) s, a parabolic profile of (NH(4))(2)SO(4) addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO(3). At PPFD of 240 mu mol-photons/m(2) s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 mu mol-photons/m(2) s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH(4))(2)SO(4) as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1271-1277, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the first study and development of an electronic tongue analysis system for the monitoring of nitrogen stable species: nitrate, nitrite and ammonium in water. The electronic tongue was composed of an array of 15 potentiometric poly(vinyl chloride) membrane sensors sensitive to cations and anions plus an artificial neural network (ANN) response model. The building of the ANN model was performed in a medium containing sodium, potassium, and chloride as interfering ions, thus simulating real environmental samples. The correlation coefficient in the cross-validation of nitrate, nitrite and ammonium was satisfactory in the three cases with values higher than 0.92. Finally, the utility of the proposed system is shown in the monitoring of the photoelectrocatalytic treatment of nitrate. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this preliminary study was to verify the antibacterial potential of cetylpyridinium chloride (CPC) in root canals infected by Enterococcus faecalis. Forty human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. The teeth were randomly assigned to the following groups: 1: Root canal preparation (RCP) + 0.1% CPC with positive-pressure irrigation (PPI, Conventional, NaviTip®); 2: RCP + 0.2% CPC PPI; 3: RCP + 2.5% NaOCl PPI; 4: RCP + 2.5% NaOCl with negative-pressure irrigation system (NPI, EndoVac®); 5: Positive control; and 6: Negative control. Four teeth of each experimental group were evaluated by culture and 4 by scanning electron microscopy (SEM). In all teeth, the root canals were dried and filled with 17% EDTA (pH 7.2) for 3 min for smear layer removal. Samples from the infected root canals were collected and immersed in 7 mL of Letheen Broth (LB), followed by incubation at 37°C for 48 h. Bacterial growth was analyzed by turbidity of culture medium and then observed with a UV spectrophotometer. The irrigating solutions were further evaluated for antimicrobial effect by an agar diffusion test.The statistical data were treated by means, standard deviation, Kruskal-Wallis test and analysis of variance. Significance level was set at 5%. The results showed the presence of E. faecalis after root canal sanitization. The number of bacteria decreased after the use of CPC. In the agar diffusion test, CPC induced large microbial inhibition zones, similar to 2% chlorhexidine and large than 2.5% NaOCl. In conclusion, cetylpyridinium chloride showed antibacterial potential in endodontic infection with E. faecalis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methyl chloride transferase catalyzes the synthesis of methyl chloride from S-adenosine-l-methionine and chloride ion. This enzyme has been purified 2,700-fold to homogeneity from Batis maritima, a halophytic plant that grows abundantly in salt marshes. The purification of the enzyme was accomplished by a combination of ammonium sulfate fractionation, column chromatography on Sephadex G100 and adenosine-agarose, and TSK-250 size-exclusion HPLC. The purified enzyme exhibits a single band on SDS/PAGE with a molecular mass of approximately 22.5 kDa. The molecular mass of the purified enzyme was 22,474 Da as determined by matrix-associated laser desorption ionization mass spectrometry. The methylase can function in either a monomeric or oligomeric form. A 32-aa sequence of an internal fragment of the methylase was determined (GLVPGCGGGYDVVAMANPER FMVGLDIXENAL, where X represents unknown residue) by Edman degradation, and a full-length cDNA of the enzyme was obtained by rapid amplification of cDNA ends–PCR amplification of cDNA oligonucleotides. The cDNA gene contains an ORF of 690 bp encoding an enzyme of 230 aa residues having a predicted molecular mass of 25,761 Da. The disparity between the observed and calculated molecular mass suggests that the methylase undergoes posttranslational cleavage, possibly during purification. Sequence homologies suggest that the B. maritima methylase defines a new family of plant methyl transferases. A possible function for this novel methylase in halophytic plants is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, semi-purified laccase from Trametes versicolor was applied for the synthesis of silver nanoparticles, and the properties of the produced nanoparticles were characterized. All of the analyses of the spectra indicated silver nanoparticle formation. A complete characterization of the silver nanoparticles showed that a complex of silver nanoparticles and silver ions was produced, with the majority of the particles having a Ag(2+) chemical structure. A hypothetical mechanistic scheme was proposed, suggesting that the main pathway that was used was the interaction of silver ions with the T1 site of laccase, producing silver nanoparticles with the concomitant inactivation of laccase activity and posterior complexing with silver ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to determine the maximum inhibitory dilution (MID) of four cetylpyridinium chloride (CPC)-based mouthwashes: CPC+Propolis, CPC+Malva, CPC+Eucaliptol+Juá+Romã+Propolis (Natural Honey®) and CPC (Cepacol®), against 28 Staphylococcus aureus field strains, using the agar dilution method. Decimal dilutions ranging from 1/10 to 1/655,360 were prepared and added to Mueller Hinton Agar. Strains were inoculated using Steers multipoint inoculator. The inocula were seeded onto the surface of the culture medium in Petri dishes containing different dilutions of the mouthwashes. The dishes were incubated at 37ºC for 24 h. For readings, the MID was considered as the maximum dilution of mouthwash still capable of inhibiting microbial growth. The obtained data showed that CPC+Propolis had antimicrobial activity against 27 strains at 1/320 dilution and against all 28 strains at 1/160 dilution, CPC+Malva inhibited the growth of all 28 strains at 1/320 dilution, CPC+Eucaliptol+Juá+Romã+Propolis inhibited the growth of 2 strains at 1/640 dilution and all 28 strains at 1/320 dilution, and Cepacol® showed antimicrobial activity against 3 strains at 1/320 dilution and against all 28 strains at 1/160 dilution. Data were submitted to Kruskal-Wallis test, showing that the MID of Cepacol® was lower than that determined for the other products (p<0.05). In conclusion, CPC-mouthwashes showed antimicrobial activity against S. aureus and the addition of other substances to CPC improved its antimicrobial effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report the preparation of a new blue-emitting material based on the templated synthesis of mesoporous silica (MCM-41) using micellar solutions of the newly synthesized monocationic metallosurfactant complex bis[1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole](4,4'-diheptadecyl-2,2'- bipyridine)-iridium(III) chloride in hexadecyl-trimethyl-ammonium bromide (CTAB). Under ambient conditions, significant increases in excited state lifetime and quantum yield values (up to 45%), were obtained for the solid materials in comparison to the corresponding micellar solutions. Solid state (1)H and (19)F NMR spectroscopies were successfully employed for quantifying the luminophore content in terms of Ir-surfactant to CTAB and Ir-surfactant to silica ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes an investigation concerning the acetylation of celluloses extracted from short-life-cycle plant sources (i.e. sugarcane bagasse and sisal fiber) as well as microcrystalline cellulose. The acetylation was carried out under homogeneous conditions using the solvent system N,N-dimethylacetamide/lithium chloride. The celluloses were characterized, and the characterizations included an evaluation of the amount of hemicellulose present in the materials obtained from lignocellulosics sources (sugarcane and sisal). The amount of LiCl was varied and its influence on the degree of acetate substitution was analyzed. It was found that the solvent system composition and the nature of the cellulose influenced both the state of chain dissolution and the product characteristics. The obtained results demonstrated the importance of developing specific studies on the dissolution process as well as on the derivatization of celluloses from various sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, NH(4) +center dot C(6)H(10)NS(2) -, is composed of an ammonium cation and a piperidine-1-carbodithioate anion which exhibits positional disorder. The atoms of the ring have a structural disorder and they are divided into two sites, with occupancy factors of 0.584 and 0.426.. In the crystal, the cation and anion are linked by N-H...S hydrogen bonds to form an infinite two-dimensional network.