951 resultados para Alpha adrenergic receptor blocking agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of Gi-coupled receptors leads to the activation of mitogen-activated protein kinases (MAP kinases). In several cell types, this appears to be dependent on the activation of p21ras (Ras). Which G-protein subunit(s) (G alpha or the G beta gamma complex) primarily is responsible for triggering this signaling pathway, however, is unclear. We have demonstrated previously that the carboxyl terminus of the beta-adrenergic receptor kinase, containing its G beta gamma-binding domain, is a cellular G beta gamma antagonist capable of specifically distinguishing G alpha- and G beta gamma-mediated processes. Using this G beta gamma inhibitor, we studied Ras and MAP kinase activation through endogenous Gi-coupled receptors in Rat-1 fibroblasts and through receptors expressed by transiently transfected COS-7 cells. We report here that both Ras and MAP kinase activation in response to lysophosphatidic acid is markedly attenuated in Rat-1 cells stably transfected with a plasmid encoding this G beta gamma antagonist. Likewise in COS-7 cells transfected with plasmids encoding Gi-coupled receptors (alpha 2-adrenergic and M2 muscarinic), the activation of Ras and MAP kinase was significantly reduced in the presence of the coexpressed G beta gamma antagonist. Ras-MAP kinase activation mediated through a Gq-coupled receptor (alpha 1-adrenergic) or the tyrosine kinase epidermal growth factor receptor was unaltered by this G beta gamma antagonist. These results identify G beta gamma as the primary mediator of Ras activation and subsequent signaling via MAP kinase in response to stimulation of Gi-coupled receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psychotic symptoms are common in Alzheimer's disease (AD) and have a negative impact oil quality of life. It is suggested that psychotic symptoms may be attributed to genetic risk factors which are revealed during neurodegeneration. CHRNA7, the gene for the alpha 7 nicotinic acetylcholine receptor, has been associated with schizophrenia in linkage and association Studies. Hence we investigated single SNPs and haplotypes in CHRNA7 in relation to AD with psychosis in a large, well-characterised and previously described cohort within the Northern Ireland population. A significant association between delusions and the T allele of rs6494223 (P = 0.014, OR = 1.63, Cl 1.22-2.17) was found. This suggests that the alpha 7 receptor may be a suitable target for the treatment of AD with psychosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents.

OBJECTIVES: To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs.

DATA SOURCES: We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014.

METHODS: Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the data extracted. Random-effects meta-analyses were used for data synthesis.

RESULTS: Eighteen RCTs (2489 adult patients) were included. One trial at unclear risk of bias compared dexmedetomidine with clonidine and found that target sedation was achieved in a higher number of patients treated with dexmedetomidine with lesser need for additional sedation. The remaining 17 trials compared dexmedetomidine with propofol or benzodiazepines (midazolam or lorazepam). Trials varied considerably with regard to clinical population, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded outcome assessors. Compared with propofol or benzodiazepines (midazolam or lorazepam), dexmedetomidine had no significant effects on mortality [risk ratio (RR) 1.03, 95% confidence interval (CI) 0.85 to 1.24, I (2) = 0%; p = 0.78]. Length of ICU stay (mean difference -1.26 days, 95% CI -1.96 to -0.55 days, I (2) = 31%; p = 0.0004) and time to extubation (mean difference -1.85 days, 95% CI -2.61 to -1.09 days, I (2) = 0%; p < 0.00001) were significantly shorter among patients who received dexmedetomidine. No difference in time to target sedation range was observed between sedative interventions (I (2) = 0%; p = 0.14). Dexmedetomidine was associated with a higher risk of bradycardia (RR 1.88, 95% CI 1.28 to 2.77, I (2) = 46%; p = 0.001).

LIMITATIONS: Trials varied considerably with regard to participants, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded assessors.

CONCLUSIONS: Evidence on the use of clonidine in ICUs is very limited. Dexmedetomidine may be effective in reducing ICU length of stay and time to extubation in critically ill ICU patients. Risk of bradycardia but not of overall mortality is higher among patients treated with dexmedetomidine. Well-designed RCTs are needed to assess the use of clonidine in ICUs and identify subgroups of patients that are more likely to benefit from the use of dexmedetomidine.

STUDY REGISTRATION: This study is registered as PROSPERO CRD42014014101.

FUNDING: The National Institute for Health Research Health Technology Assessment programme. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain stems (13S) of streptozotocin (STZ)-diabetic rats were studied lo see the changes in neurotransmitter content and their receptor regulation. The norepinephrine (NE) content determined in the diabetic brain stems did ^ control. an E showed la while PI turnover hri content increased significantly compared N^r eNveFa o the recep significant increase. The alpha2 adrenergic receptor IneP utisoulinntreat d ratsetheNE contentt dec^ sled was significantly reduced during diabetes. in versedcto reanorm sed ulcrea e tK reatment the state. while EPI content remained increased as in die diabetic B,, for a]pha2 adrenergic receptors slw^nificantly while Unlabelled clonidine inhibited [31-I]NE binding in BS of control, diabetic and insulin treated ulations bindi diabetic rats showed that alpha2 adrenergicre^ punks cojnidiabetic animal the ligand bound sites with Hill slopes significantly away from unity. weaker to the low affinity site than in controls. Insulin treatment reversed[ this allumbmn to control levels. The displacement analysis using (-)-epinephrine age in control and diabetic animals revealed two populations of receptor affinidtyo=tat ss. In control animals, when GTP analogue added with epinephrine, the curve nagnlde caofnfitnroit yS model; but in the diabetic BS this effect `not aobserved. In bintact oth the diabetic data thus showlthat the effects of monovalent cations on affinity alphaz adrenergic receptors have a reduced affinity v due in stem ialtered Itscppeomson(5- regulation. The serotonin (5-HT) coat hydroxy) tryptophan (5-HTP) showed an increase and its breakdown metabolite (5-hydroxy) indoleacetic acid (5-I{IAA) showed a significant decrease. This showed that in serotonergic which l nerves there is a disturbance in both synthetic and breankduomwnbers pretma'med ana increased 5-HT. The high affinity serotonin receptor um ese serotonerg decrease in the receptor affinity. The insulin ^treatmentsturtiy showsha decreased serotonergic receptor kinetic parameters to control level. receptor function. These changes in adrenergic and serotonergic receptor function were suggested to be important in insulin function during STZ diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF alpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNF alpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNF alpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNF alpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNF alpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNF alpha action to be important mediator of the wastage syndrome in cachexia. (Endocrinology 151: 683-694, 2010)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown the existence of two important inhibitory mechanisms for the control of NaCl and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(1)-adrenergic/imidazoline agonist clonidine (20 nmol/l RI) almost abolished water (1.6 +/- 1.2, vs. vehicle: 7.5 +/- 2.2 ml/2 h) and 0.3 M NaCl intake (0.5 +/- 0.3, vs. vehicle: 2.2 0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2b) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 mug/0.2 mul each site) into the LPBN on water (3.6 +/- 0.9 ml/2 h) and 0.3 M NaCl intake (0.4 +/- 0.2 m1/2 h). Injection of the (alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4 +/- 1.5 ml/2 h) and NaCl intake (4.0 +/- 1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2 +/- 1.0 ml/2 h) and NaCl intake (0.7 +/- 0.2 ml/2 h). Bilateral injections of methysergide (4 mug/0.2 mul each site) into the LPBN increased 0.3 M NaCl intake (6.4 +/- 1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5 +/- 0.8 and 1.7 +/- 1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of a,-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to estimate alterations in adrenergic receptor sites of guinea pig vas deferens, in vivo and in vitro, induced by chronic denervation. The denervation process induced an increased sensitivity (3-fold at the EC50 level) without alteration in the maximum response to phenylephrine in vitro. The sensitivity alteration was characterized by the decrease in the dissociation constant of phenylephrine for alpha-adrenoceptor [K-A: normal tissue 3.50 (0.75-16.21) x 10(-5) and denervated tissue 0.43 (0.11-1.67) x 10(-5) M, p < 0.05] without changing the dissociation constant of prazosin. A decrease in pD(2)' value for phenylephrine-phenoxybenzamine, probably due to a qualitative rather than a quantitative alteration in the alpha-adrenoceptor, was also shown in vitro [pD(2)': normal tissue (8.2776 +/- 0.0402) and denervated tissue (8.0051 +/- 0.0442), p < 0.05]. No change in sensitivity and maximum response to phenylephrine was observed in vivo after denervation, although an increased resistance of vas deferens to phenoxybenzamine blockade has been evidenced in this condition. (C) 1999 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that histamine is found in high concentration in mast cell granules(1). The histamine content of these granules may be released to the extracellular space if an appropriate stimulus is provided(2). Besides histamine, other preformed active substances like enzymes, chemotatic factors and proteoglycans, as well as newly generated mediators like eicosanoids, platelet activating factor and adenosine are released during the secretion process of mast cells(3). The activation of mast cell degranulation has been associated with a number of pathologic disorders, most frequently, diseases derived from the atopic state(4). It is now evident that mast cells are the primary effector cells in the early reaction in both allergic and non-allergic asthma(5,6), although some authors doubt that the late reaction of asthma is a mast cell dependent event(6). Other studies point towards basophils as cellular elements involved in the secondary phase of inflammation in allergic diseases(7). Secretion would depend on a histamine releasing factor, and on the presence of IgE on the basophil's surface(8). There is also evidence suggesting involvement of mast cells in some non-allergic inflammatory processes like arthritis(9). The pharmacological management of these diseases basically consists in the use of methylxantines, beta 2-adrenergic agonists, glucocorticoids, sodium cromoglycate-like drugs, anticholinergic and antihistaminic H 1 antagonists(10). Their therapeutic effects include bronchodilatation, receptor and physiological antagonism, prevention of inflammatory responses induced by secondary cells, and finally, inhibition of mast cell activation(11). This review is concerned with compounds having inhibitory action on mast cell activation, and their possible importance on the pathophysiology of mast cell-related diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of noradrenaline, isoproterenol, phentolamine and propranolol, injected into the basolateral nuclei of the amygdala on water intake, was investigated in male Holtzman rats. The injection of noradrenaline (40 nmol) into the amygdaloid complex (AC) of satiated rats produced no change in water intake (0.05 ± 0.03 ml/1 hour). The injection of isoproterenol (40 nmol) produced an increase in water intake in sedated rats (1.93 ± 0.23 ml/1 hour). Noradrenaline injected into the AC produced a decrease in water intake in deprived rats (0.40 ± 0.19 ml/1 hour). The injection of isoproterenol into the AC of deprived rats produced no change in water intake in comparison with control (11.65 ± 1.02 and 10.92 ± 0.88 ml/1 hour, respectively). When compared with control values, phentolamine injected prior to noradrenaline blocked the inhibitory effect of noradrenaline on water intake in deprived rats (10.40 ± 1.31 ml/1 hour). Propranolol blocked the effect of isoproterenol in satiated rats (0.85 ± 0.49 ml/1 hour) and also blocked the water intake induced by deprivation (0.53 ± 0.38 ml/1 hour). In satiated and deprived animals the injection of phentolamine before hexamethonium blocked the inhibitory effect of hexamethonium on water intake. In satiated animals, when hexamethonium was injected alone, water intake was 0.39 ± 0.25 ml/1 hour and when hexamethonium was injected with phentolamine, water intake was 1.04 ± 0.3 ml/1 hour. In deprived animals, hexamethonium alone blocked water intake (0.40 ± 0.17 ml/1 hour) and when injected with phentolamine it elicited an intake of 9.7 ± 1.8 ml/1 hour. these results clearly demonstrate the participation of catecholaminergic receptors of the AC in the regulation of water intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μM of propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p > 0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production. © 2012 International Society of Oncology and BioMarkers (ISOBM).