989 resultados para AlGaInP laser diodes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.
Resumo:
Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.
Resumo:
Freestanding semipolar (11–22) indium gallium nitride (InGaN) multiplequantum-well light-emitting diodes (LEDs) emitting at 445 nm have been realized by the use of laser lift-off (LLO) of the LEDs from a 50- m-thick GaN layer grown on a patterned (10–12) r -plane sapphire substrate (PSS). The GaN grooves originating from the growth on PSS were removed by chemical mechanical polishing. The 300 m × 300 m LEDs showed a turn-on voltage of 3.6 V and an output power through the smooth substrate of 0.87 mW at 20 mA. The electroluminescence spectrum of LEDs before and after LLO showed a stronger emission intensity along the [11–23]InGaN/GaN direction. The polarization anisotropy is independent of the GaN grooves, with a measured value of 0.14. The bandwidth of the LEDs is in excess of 150 MHz at 20 mA, and back-to-back transmission of 300 Mbps is demonstrated, making these devices suitable for visible light communication (VLC) applications.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.