973 resultados para Advanved very high resolution radiometer (AVHRR)
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
Scalable high-resolution tiled display walls are becoming increasingly important to decision makers and researchers because high pixel counts in combination with large screen areas facilitate content rich, simultaneous display of computer-generated visualization information and high-definition video data from multiple sources. This tutorial is designed to cater for new users as well as researchers who are currently operating tiled display walls or 'OptiPortals'. We will discuss the current and future applications of display wall technology and explore opportunities for participants to collaborate and contribute in a growing community. Multiple tutorial streams will cover both hands-on practical development, as well as policy and method design for embedding these technologies into the research process. Attendees will be able to gain an understanding of how to get started with developing similar systems themselves, in addition to becoming familiar with typical applications and large-scale visualisation techniques. Presentations in this tutorial will describe current implementations of tiled display walls that highlight the effective usage of screen real-estate with various visualization datasets, including collaborative applications such as visualcasting, classroom learning and video conferencing. A feature presentation for this tutorial will be given by Jurgen Schulze from Calit2 at the University of California, San Diego. Jurgen is an expert in scientific visualization in virtual environments, human-computer interaction, real-time volume rendering, and graphics algorithms on programmable graphics hardware.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species
Resumo:
The major limitation of current typing methods for Streptococcus pyogenes, such as emm sequence typing and T typing, is that these are based on regions subject to considerable selective pressure. Multilocus sequence typing (MLST) is a better indicator of the genetic backbone of a strain but is not widely used due to high costs. The objective of this study was to develop a robust and cost-effective alternative to S. pyogenes MLST. A 10-member single nucleotide polymorphism (SNP) set that provides a Simpson’s Index of Diversity (D) of 0.99 with respect to the S. pyogenes MLST database was derived. A typing format involving high-resolution melting (HRM) analysis of small fragments nucleated by each of the resolution-optimized SNPs was developed. The fragments were 59–119 bp in size and, based on differences in G+C content, were predicted to generate three to six resolvable HRM curves. The combination of curves across each of the 10 fragments can be used to generate a melt type (MelT) for each sequence type (ST). The 525 STs currently in the S. pyogenes MLST database are predicted to resolve into 298 distinct MelTs and the method is calculated to provide a D of 0.996 against the MLST database. The MelTs are concordant with the S. pyogenes population structure. To validate the method we examined clinical isolates of S. pyogenes of 70 STs. Curves were generated as predicted by G+C content discriminating the 70 STs into 65 distinct MelTs.