934 resultados para Acute Myelomonocytic Leukemia
Resumo:
Background: U19/EAF2 is a potential tumor suppressor exhibiting frequent down-regulation and allelic loss in advanced human prostate cancer specimens. U 19/EAF2 has also been identified as ELL-associated factor 2 (EAF2) based on its binding to ELL, a fusion partner of MLL in acute myeloid leukemia. U19/EAF2 is a putative transcription factor with a transactivation domain and capability of sequence-specific DNA binding. Methods: Yeast-two-hybrid-screening was used to identify U19/EAF2-binding partners. Co-immunoprecipitation and mammalian 1-hybrid assay were used to characterize a U19/EAF2-binding partner. Results: FB1, an E2A fusion partner in childhood leukemia, was identified as a binding-partner of U19/EAF2. FB1 also binds to EAF1, the only homologue of U19/EAF2. FB1 also interacts and co-localizes with ELL in the nucleus. Interestingly, FB1 inhibited the transcriptional activity of U19/EAF2 but not EAF1. Conclusions: FB1 is an important binding partner and a functional regulator of U19/EAF2, EAF1, and/or ELL. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias
Resumo:
The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis and therapeutic intervention based on improved patient stratification. Relevant pre-clinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML) and a conditional transplantation mouse model was developed that demonstrated oncogene-dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity Map (sscMap) analysis identified Entinostat as a drug with the potential to alter the leukemic condition towards the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML. © 2013 AlphaMed Press
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Resumo:
Ultraviolet-B (UVB) irradiation is known to inhibit lymphocyte activity and consequently to reduce the incidence of graft-versus-host disease (GVHD) in experimental models for allogeneic bone marrow transplantation (BMT). GVHD is frequently associated with morbidity and mortality, but also with the beneficial graft-versus-leukemia (GVL) effect, demonstrated by a reduction in the incidence of leukemia relapse. In this study, we investigated whether UVB treatment of allogeneic T cells could prevent GVHD while sparing the beneficial GVL effect following allogeneic BMT in the Brown Norway myelocytic leukemia (BNML) rat model analogous to human acute myelocytic leukemia (AML). The dose of UVB required to abolish lethal GVHD in the rat allogeneic BMT model (WAG/Rij donors into BN recipients) was 4000 J/m2. However, this UVB dose simultaneously abrogated all GVL activity mediated by the T cells in the graft, while the radio-protective capacity of rat BM cells was strongly reduced. The number of allogeneic BM cells required to protect lethally irradiated BN rats was increased 50 to 100-fold. It is concluded that UVB acts as a non-selective form of T cell inactivation, and that UVB pretreatment of an allogeneic marrow graft is unlikely to be useful clinically as a preventive measure for GVHD, since other means of reduction of the number of functional T cells are less damaging to bone marrow stem cells.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Medicina, 2015
Resumo:
Tetrasomy, pentasomy, and hexasomy 8 (polysomy 8) are relatively rare compared to trisomy 8. Here we report on a series of 12 patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or myeloproliferative disorder (MPD) associated with polysomy 8 as detected by conventional cytogenetics and fluorescence in situ hybridization (FISH). In an attempt to better characterize the clinical and hematological profile of this cytogenetic entity, our data were combined with those of 105 published patients. Tetrasomy 8 was the most common presentation of polysomy 8. In 60.7% of patients, polysomy 8 occurred as part of complex changes (16.2% with 11q23 rearrangements). No cryptic MLL rearrangements were found in cases in which polysomy 8 was the only karyotypic change. Our study demonstrates the existence of a polysomy 8 syndrome, which represents a subtype of AML, MDS, and MPD characterized by a high incidence of secondary diseases, myelomonocytic or monocytic involvement in AML and poor overall survival (6 months). Age significantly reduced median survival, but associated cytogenetic abnormalities did not modify it. Cytogenetic results further demonstrate an in vitro preferential growth of the cells with a high level of aneuploidy suggesting a selective advantage for polysomy 8 cells.
Resumo:
OBJECTIVE: We aimed to examine parents' views regarding their preadolescent child's presence during discussions about serious illnesses. METHODS: In-depth qualitative interviews with parents of children receiving treatment for acute lymphoblastic leukemia were conducted. Parents were sampled from 6 UK treatment centers. Analysis was informed by the constant comparative method and content analysis. RESULTS: We report on interviews with 53 parents (33 mothers, 20 fathers). Parents acknowledged the benefits of communicating openly with children, but few thought that their child's presence in discussions was straightforwardly desirable. They described how their child's presence restricted their own communication with physicians, made concentrating difficult, and interfered with their efforts to care for their child emotionally. Children's presence was particularly difficult when significant issues were being discussed, including prognoses, adverse results, and certain medical procedures. Parents felt that such discussions posed a potential threat to their child, particularly when they had not first had an opportunity to discuss information with the physician separately from the child. In contrast, separate meetings enabled parents to absorb information and to convey it to their child at an appropriate time and in a reassuring way. Some parents experienced difficulties in accessing separate meetings with physicians. CONCLUSIONS: The difficulties parents described could potentially be addressed by extending, beyond the diagnosis period, the practice of sequencing significant information so that it is communicated to parents in separate meetings before being communicated to the child and by periodically exploring with parents what information would be in each child's interests.
Resumo:
Caspases are central players in proteolytic pathways that regulate cellular processes Such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAH15 as a novel caspase Substrate in a trial Study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence (106)DQPD/Y(110) as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Glutathione S-transferase (GST) is a family of enzymes involved in the detoxification of electrophilic compounds. Different classes of GST are expressed in various organs, such as liver, lungs, stomach and others. Expression of GST can be modulated by diet components and plant-derived compounds. The importance of controlling GST expression is twofold: increasing levels of GST are beneficial to prevent deleterious effects of toxic and carcinogenic compounds, while inhibition of GST in tumor cells may help overcoming tumor resistance to chemotherapy. A screening of 16 plants used in the Brazilian pharmacopoeia tested their effects on GST expression in hepatocytes and Jurkat (leukemia) T-cells. The methanol extracts of five plants inhibited GST expression in hepatocytes. Three plants significantly inhibited and four others induced GST expression in Jurkat cells. Among these, the extracts of Bauhinia forficata Link. (Leguminosae) and Cecropia pachystachya Trec. (Urticaceae) inhibited GST expression at relatively low concentrations. With the exception of B. forficata, all plants were cytotoxic when administered to Jurkat cells at high doses (1 mg/mL) and some extracts were considerably cytotoxic even at lower concentrations.
Resumo:
Introduction: In this report, we propose the application of the p-iodophenol-enhanced luminol chemiluminescent technique to the determination of peroxidase (myeloperoxidase and/or platelet peroxidase) activity in blasts of minimally differentiated acute myeloblastic leukemia (AML-M0) and acute megakaryoblastic leukemia (AML-M7).Methods: the frozen blast cells from 29 patients were thawed and submitted to the optimized protocol.Results: All cases of AML-M7 and AML-M0 exhibited integrated light emission greater than 73 (10(2) mV x s), which was the arbitrary cutoff point set for the discrimination between AML and acute lymphoblastic leukemia (ALL) (mean + 3 x s.d. of ALL samples, n = 10). In addition, five out of seven cases of AML-M0 showed results above the Cutoff point.Conclusion: This highly sensitive enhanced chemiluminescent technique may be applied to discriminate between ALL and AML-M7 or AML-M1 cases, and most AML-M0 cases. It is very simple, cheap and easy to perform compared to other procedures used to measure MPO activity in AML-leukemias including AML-M7 and AML-M0.
Resumo:
Myelodysplastic syndromes (MDS) and juvenile myelomonocytic leukemia (JMML) are rare hematopoietic stem cell diseases affecting children. Cytogenetics plays an important role in the diagnosis of these diseases. We report here the experience of the Cytogenetic Subcommittee of the Brazilian Cooperative Group on Pediatric Myelodysplastic Syndromes (BCG-MDS-PED). We analyzed 168 cytogenetic studies performed in 23 different cytogenetic centers; 84 of these studies were performed in patients with confirmed MDS (primary MDS, secondary MDS, JMML, and acute myeloid leukemia/MDS+Down syndrome). Clonal abnormalities were found in 36.9% of the MDS cases and cytogenetic studies were important for the detection of constitutional diseases and for differential diagnosis with other myeloid neoplasms. These data show the importance of the Cooperative Group for continuing education in order to avoid a late or wrong diagnosis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)