816 resultados para Academic path
Resumo:
Purpose: To investigate the impact of simulated hyperopia and sustained near work on children’s ability to perform a range of academic-related tasks. Methods: Fifteen visually normal children (mean age: 10.9 ± 0.8 years; 10 males and 5 females) were recruited. Performance on a range of standardised academic-related outcome measures was assessed with and without 2.50 D of simulated bilateral hyperopia (administered in a randomised order), before and after 20 minutes of sustained near work, at two separate testing sessions. Academic-related measures included a standardised reading test (the Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (the Developmental Eye Movement test). Results: Simulated bilateral hyperopia and sustained near work each independently impaired reading, visual information processing and reading-related eye movement performance (p<0.001). A significant interaction was also demonstrated between these factors (p<0.001), with the greatest decrement in performance observed when simulated hyperopia was combined with sustained near work. This combination resulted in performance reductions of between 5% and 24% across the range of academic-related measures. A significant moderate correlation was also found between the change in horizontal near heterophoria and the change in several of the academic-related outcome measures, following the addition of simulated hyperopia. Conclusions: A relatively low level of simulated bilateral hyperopia impaired children’s performance on a range of academic–related outcome measures, with sustained near work further exacerbating this effect. Further investigations are required to determine the impact of correcting low levels of hyperopia on academic performance in children.
Resumo:
Purpose: Astigmatism is an important refractive condition in children. However, the functional impact of uncorrected astigmatism in this population is not well established, particularly with regard to academic performance. This study investigated the impact of simulated bilateral astigmatism on academic-related tasks before and after sustained near work in children. Methods: Twenty visually normal children (mean age: 10.8 ± 0.7 years; 6 males and 14 females) completed a range of standardised academic-related tests with and without 1.50 D of simulated bilateral astigmatism (with both academic-related tests and the visual condition administered in a randomised order). The simulated astigmatism was induced using a positive cylindrical lens while maintaining a plano spherical equivalent. Performance was assessed before and after 20 minutes of sustained near work, during two separate testing sessions. Academic-related measures included a standardised reading test (the Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (the Developmental Eye Movement test). Each participant was systematically assigned either with-the-rule (WTR, axis 180°) or against-the-rule (ATR, axis 90°) simulated astigmatism to evaluate the influence of axis orientation on any decrements in performance. Results: Reading, visual information processing and reading-related eye movement performance were all significantly impaired by both simulated bilateral astigmatism (p<0.001) and sustained near work (p<0.001), however, there was no significant interaction between these factors (p>0.05). Simulated astigmatism led to a reduction of between 5% and 12% in performance across the academic-related outcome measures, but there was no significant effect of the axis (WTR or ATR) of astigmatism (p>0.05). Conclusion: Simulated bilateral astigmatism impaired children’s performance on a range of academic–related outcome measures irrespective of the orientation of the astigmatism. These findings have implications for the clinical management of non-amblyogenic levels of astigmatism in relation to academic performance in children. Correction of low to moderate levels of astigmatism may improve the functional performance of children in the classroom.
Resumo:
Despite the social importance of awards, they have been largely disregarded by academic research in economics. This paper investigates whether receiving prestigious academic awards—the John Bates Clark Medal and the Fellowship of the Econometric Society—is associated with higher subsequent research productivity and status compared to a synthetic control group of non-recipient scholars with similar previous research performance. Our results suggest statistically significant positive publication and citation differences after award receipt.
Resumo:
This paper reports on a current initiative at Queensland University of Technology to provide timely, flexible and sustainable training and support to academic staff in blended learning and associated techno-pedagogies via a web-conferencing classroom and collaboration tool, Elluminate Live!. This technology was first introduced to QUT in 2008 as part of the university‘s ongoing commitment to meeting the learning needs of diverse student cohorts. The centralised Learning Design team, in collaboration with the university‘s department of eLearning Services, was given the task of providing training and support to academic staff in the effective use of the technology for teaching and learning, as part of the team‘s ongoing brief to support and enhance the provision of blended learning throughout the university. The resulting program, ―Learning Design Live‖ (LDL) is informed by Rogers‘ theory of innovation and diffusion (2003) and structured according to Wilson‘s framework for faculty development (2007). This paper discusses the program‘s design and structure, considers the program‘s impact on academic capacity in blended learning within the institution, and reflects on future directions for the program and emerging insights into blended learning and participant engagement for both staff and students.
Resumo:
To prepare for the delivery of new Bachelor of Science units in collaborative learning spaces, academic and professional staff at Queensland University of Technology piloted an academic development program over the period of a semester. The program was informed by Rogers’ theory of innovation and diffusion (2003) and structured according to Wilson’s framework for faculty development (2007). Through a series of workshops and group mentoring activities, the program modelled inquiry-based learning in a collaborative learning space, and the participants designed and practiced the delivery of teaching activities. This paper provides a preliminary evaluation of the effectiveness of the pilot based on survey responses from participants, notes from the development team who coordinated the program and audience feedback from the final showcase session. The design and structure of the program is discussed as well as possible future directions.
Resumo:
BACKGROUND As engineering schools adopt outcomes - focused learning approaches in response to government expectations and industry requirements of graduates capable of learning and applying knowledge in different contexts, university academics must be capable of developing and delivering programs that meet these requirements. Those academics are increasingly facing challenges in progressing their research and also acquiring different skill sets to meet the learning and teaching requirements. PURPOSE The goal of this study was to identify the types of development and support structures in place for academic staff, especially early career ones, and examine how the type of institution and the rank or role of the staff member affects these structures. DESIGN/METHOD We conducted semi - structured interviews with 21 individuals in a range of positions pertaining to teaching and learning in engineering education. Open coding was used to identify main themes from the guiding questions raised in the interviews and refined to address themes relevant to the development of institutional staff . The interview data was then analysed based on the type of institution and the rank/ role of the participant. RESULTS While development programs that focus on improving teaching and learning are available, the approach on using these types of programs differed based on staff perspective. Fewer academics, regardless of rank/role, had knowledge of support structures related to other areas of scholarship, e.g. disciplinary research, educational research, learning the institutional culture. The type of institution also impacted how they weighted and encouraged multiple forms of scholarship. We found that academic staff holding higher ranking positions, e.g. dean or associate dean, were not only concerned with the success of their respective programs, but also in how to promote other academic staff participation throughout the process. CONCLUSIONS The findings from this stud y extend the premise that developing effective academic staff ultimately leads to more effective institutions and successful graduates and accomplishing this requires staff buy - in at multiple stages of instructional and program development. Staff and administration developing approaches for educational innovation together (Besterfield - Sacre et al., 2014) and getting buy - in from all academic staff to invest in engineering education development will ultimately lead to more successful engineering graduates.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.