997 resultados para 95


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower Eocene calcareous nannofossil limestone cored at DSDP Site 612 on the middle slope off New Jersey represents an almost complete biostratigraphic sequence; only the lowest biozone (CP9a; NP10*) was not recovered. The thickness of the strata (198 m), the good preservation of the nannofossils, and the lack of long hiatuses justify the acceptance of this section as a lower Eocene reference for the western North Atlantic margin. The widely recognized and very similar nannofossil zonations of Martini (NP zones) and Bukry-Okada (CP zones) are emended slightly to make their lower Eocene biozones coeval; in addition, five new subzones are erected that subdivide zones CP10 and CPU (NP12 and NP13). Established biozone names are retained as they are altered little in concept, but alphanumeric code systems are changed somewhat by appending an asterisk (*) to identify zones that are emended. Zone CP10* (NP12*) is divided into two parts, the Lophodolithus nascens Subzone (CP10*a; NP12*a) and the Helicosphaera seminulum Subzone (CP10*b; NP12*b). Zone CPU* (NP13*) is divided into three parts, the Helicosphaera lophota Subzone (CP11*a; NP13*a), the Cyclicargolithuspseudogammation Subzone (CP11*b; NP13*b), and the Rhabdosphaera tenuis Subzone (CP11*c; NP13*c). At Site 612, a time-depth curve based on nannofossil datums dated in previous studies reveals a smoothly declining sediment accumulation rate, from 4.9 cm/10**3yr in CP10* (NP12*) to 2.8 cm/103 yr. in CP12* (NP14*). The ages of first-occurrence datums not previously dated are approximated by projection onto this timedepth curve and are as follows: Helicosphaera seminulum, 55.0 Ma; Helicosphaera lophota, 54.5 Ma; Cyclicargolithus pseudogammation, 53.7 Ma; Rhabdosphaera tenuis, 52.6 Ma; and Rhabdosphaera inflata, 50.2 Ma. At nearby Site 613 on the upper rise, strata of similar age, 139 m thick, contain an unconformity representing Subzone CPll*b (NP13*b) and a hiatus of approximately 1.1 m.y. duration. The sediment accumulation rate in the lower part of this section (9.7 cm/10**3yr.) is twice that observed for equivalent strata at Site 612. The hiatus and the heightened sediment accumulation rate at Site 613 probably represent the effects of episodic mass wasting on the early Eocene continental slope and rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ninety-three samples from DSDP Leg 95, Sites 612 and 613, were examined for ostracodes to aid in the study of paleoceanography and paleodepth. In total, more than 25 genera were recovered. The most abundant and diverse ostracode assemblages were from the middle Eocene at both sites; lower and upper Eocene and Pliocene-Pleistocene assemblages were less abundant and were dominated by only three or four species. The middle Eocene assemblages were the most diagnostic of paleoenvironment and suggest water depths of 1000 to 2000 m. These assemblages are similar to other middle Eocene assemblages known from the Caribbean and North Atlantic, and signify a relatively cosmopolitan fauna that inhabited moderately deep but relatively warm bottom waters.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.