854 resultados para 8-YEAR-OLD CHILDREN
Resumo:
Item 1089-H
Resumo:
Childhood obesity is a serious public health problem because of its strong association with adulthood obesity and the related adverse health consequences. The published literature indicates a rising prevalence of childhood obesity in both developed and developing countries. However no data exists on the prevalence in Northeast Thailand, one of the poorest regions of the country and one that has experienced a recent economic transition. The objective of this study was to estimate the prevalence of obesity in seven to nine year old children in urban Khon Kaen, Northeast Thailand. A cross-sectional school based survey was conducted to determine the prevalence of obesity in children of urban Khon Kaen, Thailand. Multi-staged cluster sampling was used to select 12 school clusters of 72 children each between the ages of 7 and 9 years, in primary school grades 1, 2 and 3 from government, private and demonstration schools. A total of 864 seven to nine year old school children were studied. Anthropometric measurements of standing height and weight were taken for all subjects to the nearest tenth of a centimetre and tenth of a kilogram respectively. Childhood obesity was defined as a weight-for-height Z-score above 2.0 standard deviations of the National Center for Health Statistics/World Health Organisation reference population median. The prevalence of childhood obesity was 10.8% (95% CI: 7.6, 13.9). Obesity was significantly more prevalent in boys than girls. The biggest difference was observed between the three school types, with the highest prevalence of obesity found at teacher training demonstration schools and the lowest at the government schools. This study provides the first data on childhood obesity prevalence in Northeast Thailand. The prevalence of 10.8 per cent is lower than that found in two other urban areas of Thailand but slightly higher than expected for this relatively poor region. If this prevalence rate increases, as observed in other countries in economic transition, the incidence of non-communicable diseases associated with obesity is also likely to increase, thus raising cause for concern and reason for intervention to both control and prevent obesity during childhood.
Resumo:
Purpose. We describe the profile and associations of anisometropia and aniso-astigmatism in a population-based sample of children. Methods. The Northern Ireland Childhood Errors of Refraction (NICER) study used a stratified random cluster design to recruit a representative sample of children from schools in Northern Ireland. Examinations included cycloplegic (1% cyclopentolate) autorefraction, and measures of axial length, anterior chamber depth, and corneal curvature. ?2 tests were used to assess variations in the prevalence of anisometropia and aniso-astigmatism by age group, with logistic regression used to compare odds of anisometropia and aniso-astigmatism with refractive status (myopia, emmetropia, hyperopia). The Mann-Whitney U test was used to examine interocular differences in ocular biometry. Results. Data from 661 white children aged 12 to 13 years (50.5% male) and 389 white children aged 6 to 7 years (49.6% male) are presented. The prevalence of anisometropia =1 diopters sphere (DS) did not differ statistically significantly between 6- to 7-year-old (8.5%; 95% confidence interval [CI], 3.9–13.1) and 12- to 13-year-old (9.4%; 95% CI, 5.9–12.9) children. The prevalence of aniso-astigmatism =1 diopters cylinder (DC) did not vary statistically significantly between 6- to 7-year-old (7.7%; 95% CI, 4.3–11.2) and 12- to 13-year-old (5.6%; 95% CI, 0.5–8.1) children. Anisometropia and aniso-astigmatism were more common in 12- to 13-year-old children with hyperopia =+2 DS. Anisometropic eyes had greater axial length asymmetry than nonanisometropic eyes. Aniso-astigmatic eyes were more asymmetric in axial length and corneal astigmatism than eyes without aniso-astigmatism. Conclusions. In this population, there is a high prevalence of axial anisometropia and corneal/axial aniso-astigmatism, associated with hyperopia, but whether these relations are causal is unclear. Further work is required to clarify the developmental mechanism behind these associations.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Testing the psychometric properties of Kidscreen-27 with Irish children of low socio-economic status
Resumo:
Background
Kidscreen-27 was developed as part of a cross-cultural European Union-funded project to standardise the measurement of children’s health-related quality of life. Yet, research has reported mixed evidence for the hypothesised 5-factor model, and no confirmatory factor analysis (CFA) has been conducted on the instrument with children of low socio-economic status (SES) across Ireland (Northern and Republic).
Method
The data for this study were collected as part of a clustered randomised controlled trial. A total of 663 (347 male, 315 female) 8–9-year-old children (M = 8.74, SD = .50) of low SES took part. A 5- and modified 7-factor CFA models were specified using the maximum likelihood estimation. A nested Chi-square difference test was conducted to compare the fit of the models. Internal consistency and floor and ceiling effects were also examined.
Results
CFA found that the hypothesised 5-factor model was an unacceptable fit. However, the modified 7-factor model was supported. A nested Chi-square difference test confirmed that the fit of the 7-factor model was significantly better than that of the 5-factor model. Internal consistency was unacceptable for just one scale. Ceiling effects were present in all but one of the factors.
Conclusions
Future research should apply the 7-factor model with children of low socio-economic status. Such efforts would help monitor the health status of the population.
Resumo:
Extreme lipid values predisposing on illnesses are dyslipidemias. Dyslipidemias evolve in early childhood, but their significance or persistency is not well known. Common dyslipidemias may aggregate in the same families. This thesis is a part of the longitudinal randomized Special Turku coronary Risk factor Intervention Project STRIP, in which 1054 families with six months old children were randomized to a control or to an intervention group. The family lipid data from the first 11 years was used. Fasting samples at the age of five years defined the lipid phenotypes. The dyslipidemias coexisting in the parent and the child were studied. At the age of 11 years 402 children participated artery ultrasound studies. The significance of the childhood dyslipidemias and lipoprotein(a) concentration on endothelial function was evaluated with the flow mediated arterial dilatation test. Frequently elevated non-HDL cholesterol concentration from one to seven-year-old children associated to similar parental dyslipidemia that improved the predictive value of the childhood sample. The familial combinations were hypercholesterolemia (2.3%), hypertriglyceridemia (2.0%), familial combined hyperlipidemia (1.8%), and isolated low HDL-cholesterol concentration (1.4%). Combined hyperlipidemia in a parent predicted most frequently the child’s hyperlipidemia. High lipoprotein(a) concentration aggregated in some families and associated to childhood attenuated brachial artery dilatation. Hypercholesterolemia and high lipoprotein(a) concentration at five years of age predicted attenuated dilatation. This study demonstrated that parental dyslipidemias and high lipoprotein(a) concentration help to find early childhood dyslipidemias. The association of hypercholesterolemia and lipoprotein(a) concentration with endothelial function emphasizes the importance of the early recognition of the dyslipidemias.