996 resultados para 79-544
Resumo:
The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.
Resumo:
Stable Cl isotope ratios, measured in marine pore waters associated with the Barbados and Nankai subduction zones, extend significantly (to ~-8 per mil) the range of d37Cl values reported for natural waters. These relatively large negative values, together with geologic and chemical evidence from Barbados and Nankai and recent laboratory data showing that hydrous silicate minerals (i.e., those with structural OH sites) are enriched up to 7.5 per mil in 37Cl relative to seawater, strongly suggest that the isotopic composition of Cl in pore waters from subduction zones reflects diagenetic and metamorphic dehydration and transformation reactions. These reactions involve clays and/or other hydrous silicate phases at depth in the fluid source regions. Chlorine therefore cannot be considered geochemically conservative in these systems. The uptake of Cl by hydrous phases provides a mechanism by which Cl can be cycled into the mantle through subduction zones. Thus, stable Cl isotopes should help in determining the extent to which Cl and companion excess volatiles like H2O and CO2 cycle between the crust and mantle.
Resumo:
At Site 546, below the Mazagan Escarpment at a water depth of 4 km, 36 m of salt rock was cored from the top of one of a field of salt domes. The core was studied by thin section and a variety of geochemical procedures. The salt rock contains 0.1 to 3% carnallite and lesser amounts of sylvite and polyhalite, which with the corresponding high level of bromide place it within the potash evaporite facies. The bromide profile is of a dominantly marine evaporite deposited in moderately shallow brine which, however, was not repeatedly desiccated. A mineralogical argument suggests that the brine surface was not below sea level. An average of about 5% elastics, with dispersed anhydrite, darken the salt rock to deep shades of red, brown, and gray green. Most of the included materials are in highly deformed boudins or dispersions in the salt rock that has also undergone cataclasis in a subsequent, probably tectonic, deformation. The salt rock is slightly deficient in anhydrite, and the usual separate beds and laminae of anhydrite are virtually absent. Stable isotope ratios of sulfur and oxygen in the sulfate are clearly derived from sea water of Permian to Scythian age, in contrast to the late Triassic or Early Jurassic age of evaporites onshore in Morocco and Portugal and the corresponding evaporites offshore Maritime Canada. In contrast to those evaporites off the axis of Atlantic rifting, the salt at Site 546 may have been deposited in a very early central rift fed by marine waters from Tethys through the Gibraltar or South Atlas fracture zones.