981 resultados para 620400 Primary Products From Plants
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognite impairment and personality changes. The development of drugs for the treatment of the cognitive deficits of AD has focused on agents which counteract loss in cholinergic activities. These symptons of AD have been successfully treated with acetylcholinesterase (AchE) inhibitors (eg. galanthamine). There still is great interest in finding better AchE inhibitors. We use Ellmann's microplate assay and silica gel thin-layer chromatography (TLC) to screen natural products from plants as new sources of AchE inhibitors.
Resumo:
A leishmaniose é uma doença de caráter antropozoonótico causada por parasitas do gênero Leishmania. Estes parasitas proliferam principalmente dentro de macrófagos de mamíferos e são responsáveis por promover uma diversidade de manifestações clínicas como Leishmaniose Cutânea (LC) e Leishmaniose Mucocutânea (LMC). O único tratamento utilizado para a leishmaniose é a quimioterapia, onde geralmente são utilizadas drogas tóxicas e com longo período de tratamento. O estudo de produtos naturais obtidos de plantas como agente leishmanicida desempenha um papel importante na busca de novas drogas para o tratamento da leishmaniose. A (+)-filantidina é um alcaloide extraído do caule da planta Margaritaria nobilis, pertencente a família Phyllanthaceae. Desta forma, objetivo deste estudo é avaliar os efeitos da (+)-filantidina sobre formas promastigotas de Leishmania (Leishmania) amazonensis e a célula hospedeira. A atividade antiproliferativa de formas promastigotas foi avaliada quando os parasitas foram tratados com 50, 100 e 200 μg/ml do alcaloide por 96 horas, com redução de 73,75%, 82,50% e 88,75% no número de parasitas respectivamente, quando comparados ao grupo controle sem tratamento. No período de 96 horas, foi observado um valor IC50 de 56,34 μg/ml. A anfotericina B foi utilizada como droga de referência na concentração de 0,1 μg/ml, sendo observada redução de 100% dos parasitas durante as 96 horas de tratamento. O tratamento com o alcaloide promoveu alterações importantes nas promastigotas, mostradas através de microscopia eletrônica de transmissão e varredura. Foram observadas alterações no corpo celular, flagelo, cinetoplasto, mitocôndria, indução na formação de rosetas, presença de vesículas eletrodensas sugestivas de corpúsculos lipídicos e aumento no número de estruturas semelhantes a acidocalcisssomos. Com relação à célula hospedeira, não foi observado efeito citotóxico nos macrófagos tratados com alcaloide e análise por microscopia eletrônica de varredura mostrou que o alcaloide promoveu aumento no número de projeções citoplasmáticas, aumento do volume celular e espraiamento. Assim, estes resultados demonstram que a (+)-filantidina foi eficaz na redução do crescimento de formas promastigotas do protozoário, sendo eficaz na ativação de macrófagos sem causar efeito citotóxico para o mesmo, o que pode representar uma fonte alternativa para o tratamento da leishmaniose.
Resumo:
A malária ainda é um dos mais sérios problemas de saúde pública e a principal causa de mortalidade e morbidade nas regiões endêmicas. O Brasil está entre os 30 países com maior incidência de malária e a maior parte dos casos ocorre na Amazônia Legal. Novos agentes terapêuticos são necessários para o tratamento da malária. Muitas espécies vegetais são utilizadas na medicina tradicional de vários países endêmicos mas é relativamente reduzido o número daquelas que já foram investigadas quanto à sua atividade antimalárica. Menor ainda é o número de espécies das quais foram isoladas substâncias ativas e tiveram sua toxidade determinada. Esta área de pesquisa é, portanto, de alta relevância. Um projeto de descoberta de produtos naturais antimaláricos a partir de plantas de uso tradicional deve incluir ensaios in vitro e in vivo bem como o isolamento biomonitorado de substâncias ativas. Os produtos finais serão substâncias naturais antimaláricas, potenciais fármacos ou protótipos para o desenvolvimento de novos fármacos, e/ou extratos padronizados, com atividade antimalárica, os quais são necessários para estudos pré-clínicos e clínicos quando o objetivo é o desenvolvimento de fitoterápicos (fitomedicamentos) eficazes e seguros. A presente revisão discute estas duas abordagens, apresenta resumidamente as metodologias de bioensaios para avaliação de atividade antimalárica e focaliza a atividade de alcalóides pertencentes a diferentes classes estruturais bem como sua importância como fármacos ou protótipos e como marcadores químicos de fitoterápicos.
Resumo:
Essential oils are products from plants and can be located in parts or in its entirety. There are several methods for its extraction, where the most suitable depends on the plant or the use of the essence. The main species cultivated in Brazil are the Corymbia citriodora, Eucalyptus globulus and Eucalyptus staigeriana. The Corymbia citriodora is a species that was introduced in Brazil along with other species, with the initial objective of timber production. The yield of oil can range from 0.5 % to 3.0% according to the literature and this can be optimized by reducing the moisture content of the leaves. Studies show that the lower water content in the leaves allows the vapor stream generated in the extractor can drag, more efficiently, the volatiles stored in the cells as compared with the green material. The drying of the sheets is important for companies, so that there is transport of water, increasing the volume of the sheets to distillation and hence a greater volume of oil. The objective of this study was to compare the drying methods, analyzing the income of the essence and determine the best method to optimize the yield of essential oil. Experimental tests were performed natural drying 10, 15 and 20 days and fluidized with times of 60, 90 and 120 minutes and after drying were extractions of the oil. The results obtained for fresh leave yield was 1.20 % and the drying time which showed the highest yield was 15 and 20 days with 2.90 % and 2.70 % yield, respectively, with the lowest level humidity of 16%. The yields obtained in fluidized bed drying did not change as the natural drying to between 1.64% and 1.7%. It is concluded that the decreased level of the sheets increases the yield of oil and the temperature in the fluidized bed is essential for the removal of water from the leaves necessary to increase the yield
Resumo:
There is concern that the commercial harvest of kangaroos (Macropus spp.) is affecting species fitness and evolutionary potential because the harvest selects for larger individuals, particularly males. This paper reviews the likely effect of selective harvesting on specific traits associated with fitness, including size, and on adaptive genotypes through generalised loss of gene diversity. Heritability for traits associated with fitness is low generally. The intensity of selection imposed by harvesting is low for several reasons: the geographic size of genetic populations is much larger than the harvest localities, which are therefore not closed but open with immigration acting to correct any change in allele frequencies through harvesting; the harvest targets kangaroos above a threshold weight that includes all adult males, not the largest males specifically; larger, older males may not confer significant fitness benefits on offspring; fitness traits are inherited through both sexes while males are targeted predominantly; populations are not at a selective equilibrium because food availability fluctuates, and the fittest is unlikely to be the largest. Comparisons of harvested and unharvested populations do not show any loss of gene diversity as a result of harvesting. The likelihood of a long-term genetic impact of kangaroo harvesting as currently practiced is negligible.
Resumo:
Seven phenolic acids related to the botanical origins of nine monofloral Eucalyptus honeys from Australia, along with two abscisic isomers, have been analyzed. The mean content of total phenolic acids ranges from 2.14 mg/100 g honey of black box (Eucalyptus largiflorens) honey to 10.3 mg/100 g honey of bloodwood (Eucalyptus intermedia) honey, confirming an early finding that species-specific differences of phytochemical compositions occur quantitatively among these Eucalyptus honeys. A common profile of phenolic acids, comprising gallic, chlorogenic, coumaric and caffeic acids, can be found in all the Eucalyptus honeys, which could be floral markers for Australian Eucalyptus honeys. Thus, the analysis of phenolic acids could also be used as an objective method for the authentication of botanical origin of Eucalyptus honeys. Moreover, all the honey samples analyzed in this study contain gallic acid as the main phenolic acid, except for stringybox (Eucalyptus globoidia) honey which has ellagic acid as the main phenolic acid. This result indicates that the species-specific differences can also be found in the honey profiles of phenolic acids. Further-more, the analysis of abscisic acid in honey shows that the content of abscisic acid varies from 0.55 mg/100 g honey of black box honey to 4.68 mg/ 100 g honey of bloodwood honey, corresponding to the contents of phenolic acids measured in these honeys. These results have further revealed that the HPLC analysis of honey phytochemical constituents could be used individually and/or jointly for the authentication of the botanical origins of Australian Eucalyptus honeys. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Flavonoids in Australian honeys from five botanical species (Melaleuca, Guioa, Lophostemon, Banksia and Helianthus) have been analyzed in relation to their floral origins. Tea tree (Melaleuca quinquenervia) and heath (Banksia ericifolia) honeys show a common flavonoid profile comprising myricetin (3,5,7,3',4',5'-hexahydroxyflavone), tricetin (5,7,3',4,5'-pentahydroxyflavone), querectin (3,5,7,3',4'-pentahydroxyflavone) and luteolin (5,7,3',4'-tetrahydroxyflavone), which was previously suggested as a floral marker for an Australian Eucalyptus honey (bloodwood or Eucalyptus intermedia honey). These honeys of various floral species can be differentiated by their levels of total flavonoids, being 2.12 mg/100 g for heath honey and 6.35 m/100 g for tea tree honey. In brush box (Lophostemon conferta) honey, the flavonoid profile comprising mainly tricetin, luteolin and quercetin is similar to that of another Eucalyptus honey (yellow box or Eucalyptus melliodora honey). These results indicate that the flavonoid profiles in some of the Australian non-Eucalyptus honeys may contain more or less certain flavonoids from Eucalyptus floral sources because of the diversity and extensive availability of Eucalyptus nectars for honeybee foraging yearly around or a possible cross contamination of the monofloral honeys during collection, transportation and/or storage. Further analyses are required to differentiate and/or verify the botanical sources of the flavonoids that contribute to the flavonoid profiles of these honeys, by restricting honey sampling areas and procedures, employing other complementary analytical methods (e.g. pollen analysis, sugar profile) and using materials (e.g. nectar) directly sourced from the flowering plant for comparative studies. In Australian crow ash (Guioa semiglauca) honey, myricetin, tricetin, quercetin, luteolin and an unknown flavonoid have been found to be the main flavonoids, which is characteristic only to this type of honey, and could thus be used as the floral marker, while in Australian sunflower (Helianthus annuus) honey, the content of total flavonoids is the smallest amount comparing to those in the other honeys analysed in this study. However, the flavonoid quercetin and the flavonoid profile mainly consisting of quercetin, quercetin 3,3'-dimethyl ether (5,7,4'-trihydroxy3,3'-dimethoxyflavone), myricetin and luteolin are characteristic only to this sunflower honey and could thus be used for the authentication.
Resumo:
In both Australia and Brazil there are rapid changes occurring in the macroenvironment of the dairy industry. These changes are sometimes not noticed in the microenvironment of the farm, due to the labour-intensive nature of family farms, and the traditionally weak links between production and marketing. Trends in the external environment need to be discussed in a cooperative framework, to plan integrated actions for the dairy community as a whole and to demand actions from research, development and extension (R, D & E). This paper reviews the evolution of R, D & E in terms of paradigms and approaches, the present strategies used to identify dairy industry needs in Australia and Brazil, and presents a participatory strategy to design R, D & E actions for both countries. The strategy incorporates an integration of the opinions of key industry actors ( defined as members of the dairy and associated communities), especially farm suppliers ( input market), farmers, R, D & E people, milk processors and credit providers. The strategy also uses case studies with farm stays, purposive sampling, snowball interviewing techniques, semi-structured interviews, content analysis, focus group meetings, and feedback analysis, to refine the priorities for R, D & E actions in the region.
Resumo:
Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae ) is an insect from Australia which is causing severe damage to eucalyptus crops around the world. When feeding from the leaves sap, it causes bronzening, and in extreme cases, may lead to the tree death. Control methods have been studied and the most promising so far is the egg parasitoid Cleruchoides noackae (Hymenoptera: Mymaridae). Alternative products from plants with insecticidal properties could also be a viable option, and they might even be used concomitantly with C. noackae, aiming for a most effective control, but still safe for the environment. Thus, the objective of this work was to verify the action of 5% aqueous plant extracts of Matricaria chamomilla, Echinodorus grandiflorus, Punica granatum, Maytenus ilicifolia a n d Origanum majorana on T. peregrinus. In addition, we aimed to study the extracts potential toxicity to C. noackae and Gallus domesticus L., since the plant compounds might have negative effect upon the non-target organisms. At first, HPLC (High Performance Liquid Chromatography) was used to verify which phenolic compounds would be found in the plant extracts. These were tested on bronze bug adults, in confinement test (to verify the insecticidal action of the extracts) and free-choice test (to verify the repellency). The extracts that showed better results were selected for further tests with non-target organisms. Regarding C. noackae, pre-parasitism and post-parasitism, confinement and free-choice tests were performed to verify if the extracts would affect the host-choosing by the female or the development of the immature stages of the parasitoid. To verify if the extracts would be toxic to G. domesticus, the plant extracts were added to young birds feed for five days. Parameters such as weight gain, food intake, quantification of serum enzymes and histopathological analysis were carried out. HPLC analysis detected gallic, ferulic, vanillic, caffeic and cumaric acid in the extracts samples. All plant extracts tested reduced T. peregrinus survival, but E. grandiflorus, Matricaria chamomilla Maytenus ilicifolia had also a repellent effect, and were tested on the non-target organisms. None of these extracts affected neither the host choice by C. noackae nor adult emergency, when compared to the control group. In addition, the extracts did not cause alterations in any of the studied parameters. Thus, we verified that E. grandiflorus, Matricaria chamomilla and Maytenus ilicifolia have potential to be used to control T. peregrinus and are safe to C. noackae and G. domesticus.
Resumo:
Transgenic tobacco plants expressing a phenylalanine ammonia-lyase cDNA (ShPAL), isolated from Stylosanthes humilis, under the control of the 35S promoter of the cauliflower mosaic virus were produced to test the effect of high level PAL expression on disease resistance. The transgenic plants showed up to eightfold PAL activity and were slowed in growth and flowering relative to non-transgenic controls which have segregated out the transgene. The expression of the ShPAL transgene and elevated PAL levels were correlated and stably inherited. In T-1 and T-2 tobacco plants with increased PAL activity, lesion expansion was significantly reduced by up to 55% on stems inoculated with the Oomycete pathogen Phytophthora parasitica pv. nicotianae, Lesion area was significantly reduced by up to 50% on leaves inoculated with the fungal pathogen Cercospora nicotianae. This study provides further evidence that PAL has a role in plant defence. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The objective of this study is to identify subtypes of Human Immunodeficiency Virus type 1 (HIV-1) and to analyze the presence of mutations associated to antiretroviral resistance in the protease (PR) and reverse transcriptase (RT) regions from 48 HIV-1 positive treatment naïve patients from an outpatient clinic in Maringá, Paraná, Brazil. Sequencing was conducted using PR, partial RT and group-specific antigen gene (gag) nested PCR products from retrotranscribed RNA. Transmitted resistance was determined according to the Surveillance Drug Resistance Mutation List (SDRM) algorithm. Phylogenetic and SimPlot analysis of concatenated genetic segments classified sequences as subtype B 19/48 (39.6%), subtype C 12/48 (25%), subtype F 4/48 (8.3%), with 13/48 (27.1%) recombinant forms. Most recombinant forms were B mosaics (B/F 12.5%, B/C 10.4%), with one C/F (2.1%) and one complex B/C/F mosaic (2.1%). Low levels of transmitted resistance were found in this study, 2/48 (2.1% to NRTIs and 2.1% for PI). This preliminary data may subsidize the monitoring of the HIV evolution in the region.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.