998 resultados para 13200-007
Resumo:
Background Little or no research has been done in the overweight child on the relative contribution of multisensory information to maintain postural stability. Therefore, the purpose of this study was to investigate postural balance control under normal and experimentally altered sensory conditions in normal-weight versus overweight children. Methods Sixty children were stratified into a younger (7–9 yr) and an older age group (10–12 yr). Participants were also classified as normal-weight (n = 22) or overweight (n = 38), according to the international BMI cut-off points for children. Postural stability was assessed during quiet bilateral stance in four sensory conditions (eyes open or closed, normal or reduced plantar sensation), using a Kistler force plate to quantify COP dynamics. Coefficients of variation were calculated as well to describe intra-individual variability. Findings Removal of vision resulted in systematically higher amounts of postural sway, but no significant BMI group differences were demonstrated across sensory conditions. However, under normal conditions lower plantar cutaneous sensation was associated with higher COP velocities and maximal excursion of the COP in the medial-lateral direction for the overweight group. Regardless of condition, higher variability was shown in the overweight children within the 7–9 yr old subgroup for postural sway velocity, and more specifically medial–lateral velocity. Interpretation In spite of these subtle differences, results did not establish any clear underlying sensory organization impairments that may affect standing balance performance in overweight children compared to normal-weight peers. Consequently, it is believed that other factors account for overweight children's functional balance deficiencies.
Resumo:
Lithium niobate powders from the raw powders of Li2 O5 are directly synthesized by a combustion method with urea fuel. The synthesis parameters (e.g. the calcination temperature, calcination time, and urea-to-(Li2 CO3 + Nb2 O5) quantity ratio) are studied to reveal the optimized synthesis conditions for preparing high-quality lithium niobate powders. In our present work, it is found that a urea-to-(Li2 CO3 + Nb2 O5) ratio close to 3, calcination temperature at 550-600 degrees and reaction time around 2.5h may lead to high-quality lithium niobate powsers. The microstructure of synthesized powders is further studied; a possible mechanism of the involved reactions is also proposed.
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
This chapter addresses the changing climate of assessment policy and practice in Australia in response to global trends in education and the mounting accountability demands of standards-driven reform. Queensland, a State of Australia, has a tradition of respecting and trusting teacher judgment through the practice of, and policy commitment to, externally moderated school-based assessment. This chapter outlines the global trends in curriculum and assessment reform, and then analyzes the impact of international comparisons on national policy. The creation of the Australian Curriculum, Assessment and Reporting Authority (ACARA) together with the intent of establishing a standards-referenced framework raises tensions and challenges for teachers’ practice. The argument for sustaining confidence in teacher-based assessment is developed with reference to research evidence pertaining to the use of more authentic assessments and moderation practices for the purposes of improving learning, equity and accountability. Evidence is drawn from local studies of teacher judgment practice and used to demonstrate these developments and in so doing illuminate the complex issues of engaging the demands of policy while sustaining confidence in teacher assessment.
Resumo:
Although the siphon has been in use since ancient times, the exact mechanism of operation is still under discussion. For example, most dictionaries assert that atmospheric pressure is essential to the operation of a siphon rather than gravity. Although there is general agreement that gravity is the motivating force in a siphon, there is disagreement on how liquid enters a siphon – is it atmospheric push or tensile pull? This paper describes a classroom experiment that can serve as the basis for discussing how a siphon works. The experiment involves the construction of a siphon in which the water level in the upper reservoir is held constant during the operation of the siphon. Since the atmosphere is not doing any work on the water in the upper reservoir only gravity is at work. The special situation of a bubble-in-a-siphon is also discussed in which both atmospheric pressure and gravity are at work.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. This paper proposes two inspection modules for an automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localisation and segmentation. The “back-end” inspection involves the classification of solder joints using the Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. The Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. This system could contribute to the development of automated non-contact, non-destructive and low cost solder joint quality inspection systems.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.