911 resultados para [MATH] Mathematics [math]
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
Generalizing a result (the case k = 1) due to M. A. Perles, we show that any polytopal upper bound sphere of odd dimension 2k + 1 belongs to the generalized Walkup class K-k(2k + 1), i.e., all its vertex links are k-stacked spheres. This is surprising since it is far from obvious that the vertex links of polytopal upper bound spheres should have any special combinatorial structure. It has been conjectured that for d not equal 2k + 1, all (k + 1)-neighborly members of the class K-k(d) are tight. The result of this paper shows that the hypothesis d not equal 2k + 1 is essential for every value of k >= 1.
Resumo:
A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.
Resumo:
The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.
Resumo:
A triangulated d-manifold K, satisfies the inequality for da parts per thousand yen3. The triangulated d-manifolds that meet the bound with equality are called tight neighbourly. In this paper, we present tight neighbourly triangulations of 4-manifolds on 15 vertices with as an automorphism group. One such example was constructed by Bagchi and Datta (Discrete Math. 311 (citeyearbd102011) 986-995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable.
Resumo:
Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.
Resumo:
We consider the nonabelian sandpile model defined on directed trees by Ayyer et al. (2015 Commun. Math. Phys. 335 1065). and restrict it to the special case of a one-dimensional lattice of n sites which has open boundaries and disordered hopping rates. We focus on the joint distribution of the integrated currents across each bond simultaneously, and calculate its cumulant generating function exactly. Surprisingly, the process conditioned on seeing specified currents across each bond turns out to be a renormalised version of the same process. We also remark on a duality property of the large deviation function. Lastly, all eigenvalues and both Perron eigenvectors of the tilted generator are determined.
Resumo:
Nos dias atuais, a maioria das operações feitas por empresas e organizações é armazenada em bancos de dados que podem ser explorados por pesquisadores com o objetivo de se obter informações úteis para auxílio da tomada de decisão. Devido ao grande volume envolvido, a extração e análise dos dados não é uma tarefa simples. O processo geral de conversão de dados brutos em informações úteis chama-se Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases). Uma das etapas deste processo é a Mineração de Dados (Data Mining), que consiste na aplicação de algoritmos e técnicas estatísticas para explorar informações contidas implicitamente em grandes bancos de dados. Muitas áreas utilizam o processo KDD para facilitar o reconhecimento de padrões ou modelos em suas bases de informações. Este trabalho apresenta uma aplicação prática do processo KDD utilizando a base de dados de alunos do 9 ano do ensino básico do Estado do Rio de Janeiro, disponibilizada no site do INEP, com o objetivo de descobrir padrões interessantes entre o perfil socioeconômico do aluno e seu desempenho obtido em Matemática na Prova Brasil 2011. Neste trabalho, utilizando-se da ferramenta chamada Weka (Waikato Environment for Knowledge Analysis), foi aplicada a tarefa de mineração de dados conhecida como associação, onde se extraiu regras por intermédio do algoritmo Apriori. Neste estudo foi possível descobrir, por exemplo, que alunos que já foram reprovados uma vez tendem a tirar uma nota inferior na prova de matemática, assim como alunos que nunca foram reprovados tiveram um melhor desempenho. Outros fatores, como a sua pretensão futura, a escolaridade dos pais, a preferência de matemática, o grupo étnico o qual o aluno pertence, se o aluno lê sites frequentemente, também influenciam positivamente ou negativamente no aprendizado do discente. Também foi feita uma análise de acordo com a infraestrutura da escola onde o aluno estuda e com isso, pôde-se afirmar que os padrões descobertos ocorrem independentemente se estes alunos estudam em escolas que possuem infraestrutura boa ou ruim. Os resultados obtidos podem ser utilizados para traçar perfis de estudantes que tem um melhor ou um pior desempenho em matemática e para a elaboração de políticas públicas na área de educação, voltadas ao ensino fundamental.
Resumo:
O presente estudo teve como objetivo geral compreender o processo de aprendizagem da matemática de estudantes durante o ciclo de alfabetização na cidade do Rio de Janeiro. Para isso, fez-se uso dos dados de uma pesquisa longitudinal, denominada Estudo Longitudinal da Geração Escolar 2005 GERES 2005. Esta Pesquisa consistiu em um estudo de painel que acompanhou ao longo de quatro anos consecutivos (de 2005 a 2008) uma amostra de estudantes do primeiro segmento do Ensino Fundamental (1 à 4 série e/ou 2 ao 5 ano) em cinco cidades brasileiras - Rio de Janeiro, Belo Horizonte, Campinas, Campo Grande e Salvador, por meio de testes de Matemática e Leitura aplicados aos estudantes e de questionários contextuais aplicados a seus professores, aos diretores das escolas, e aos pais. Especificamente o estudo concentrou-se sobre os dados referentes à rede municipal do Rio de Janeiro e mais especificamente ao período correspondente ao ciclo de alfabetização. Foram analisados os resultados médios em matemática dos estudantes nas três primeiras Ondas de avaliação e o percentual de acertos nos itens comuns a essas Ondas, com o intuito de verificar a evolução da aprendizagem em matemática ao longo do início da escolarização nos anos iniciais. Dentre os principais resultados da pesquisa foi possível perceber certa fragilidade na construção dos conceitos matemáticos básico dos anos iniciais, evidenciando que possivelmente a construção da linguagem matemática encontra-se aquém do esperado para os estudantes no início de sua formação matemática. Possivelmente, estes resultados reflitam uma prática comum nas escolas em que a ênfase do processo de aprendizagem esteja centrada em processos individuais, em contextos pouco familiares à criança, além da proposição de atividades que pouco exploram o raciocínio lógico e dedutivo do aluno, ou seja, o pensar sobre de forma lúdica e criativa. Tudo isso tem contribuído para aumentar a distância entre estudantes de diferentes classes sociais ou diferentes redes de ensino.
Desenvolvimento do clube de história da matemática: um diálogo das ciências humanas com a matemática
Resumo:
Este trabalho apresenta uma pesquisa sobre a utilização da História da Matemática no ensino básico do Colégio Militar do Rio de Janeiro CMRJ através de manifestações artísticas, fazendo uso, principalmente, do teatro,para que alunos percebam a matemática como uma ciência temporal, humana e sujeita a interferências políticas e sociais e, dessa forma, desenvolver a criticidade, aumentar a sensibilidade e o senso de solidariedade. A partir de um tema da história envolvendo fatos matemáticos os alunos pesquisam, escrevem uma peça teatral e encenam para um público formado por pessoas da comunidade escolar. Como a intenção é tornar essa prática efetiva, a pesquisa culmina na fundação do Clube de História da Matemática, espaço onde, espera-se, atividades recorrentes sejamdesenvolvidas, atraindo alunos afetos tanto às ciências humanas e sociais como às ciências exatas. Realiza-se um estudo de caso com observação participante, por ser o autor também professor do CMRJ. Este estudo busca referência teórica principalmente em autores relacionados à História da Matemática, Arte na Educação, gestão democrática, relações de poder e na legislação vigente. A pesquisa aponta a importância do trabalho com a história e com a arte e nos leva a concluir que, para formar cidadãos participativos e críticos, o primeiro passo é a sociedade tornar-se participativa e crítica, sendo a escola o principal locuspara tal formação.
Resumo:
M. Hieber, I. Wood: Asymptotics of perturbations to the wave equation. In: Evolution Equations, Lecture Notes in Pure and Appl. Math., 234, Marcel Dekker, (2003), 243-252.
Resumo:
I.Wood: Maximal Lp-regularity for the Laplacian on Lipschitz domains, Math. Z., 255, 4 (2007), 855-875.
Resumo:
R.J. DOUGLAS, Non-existence of polar factorisations and polar inclusion of a vector-valued mapping. Intern. Jour. Of Pure and Appl. Math., (IJPAM) 41, no. 3 (2007).
Resumo:
B.M. Brown, M. Marletta, S. Naboko, I. Wood: Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc., June 2008; 77: 700-718. The full text of this article will be made available in this repository in June 2009 Sponsorship: EPSRC,INTAS