961 resultados para weighted shift and hyponormality
Resumo:
Multiparametric Magnetic Resonance Imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 Weighted-Imaging and at least two functional techniques, which include Dynamic Contrast–Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and Magnetic Resonance Imaging Spectroscopy. Although the combined use of a pelvic phased-array and an Endorectal Coil is considered the state-of-the-art for Magnetic Resonance Imaging evaluation of prostate cancer, Endorectal Coil is only absolute mandatory for Magnetic Resonance Imaging Spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 Weighted-Imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-Magnetic Resonance Imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Recent years have seen a striking proliferation of the term ‘global’ in public and political discourse. The popularity of the term is a manifestation of the fact that there is a widespread notion that contemporary social reality is ‘global’. The acknowledgment of this notion has important political implications and raises questions about the role played by the idea of the ‘global’ in policy making. These questions, in turn, expose even more fundamental issues about whether the term ‘global’ indicates a difference in kind, even an ontological shift, and, if so, how to approach it. This paper argues that the notion of ‘global’, in other words the ‘global dimension’, is a significant aspect of contemporary politics that needs to be investigated. The paper argues that in the globalization discourse of International Studies ‘global’ is ‘naturalized’, which means that it is taken for granted and assumed to be self-evident. The term ‘global’ is used mainly in a descriptive way and subsumed under the rubric of ‘globalization’. ‘Global’ tends to be equated with transnational and/or world-wide; hence, it addresses quantitative differences in degree but not (alleged) differences in kind. In order to advance our understanding of contemporary politics, ‘global’ needs to be taken seriously. This means, firstly, to understand and to conceptualize ‘global’ as a social category; and, secondly, to uncover ‘global’ as a ‘naturalized’ concept in the Political and International Studies strand of the globalization discourse in order to rescue it for innovative new approaches in the investigation of contemporary politics. In order to do so, the paper suggests adopting a strong linguistic approach starting with the analysis of the word ‘global’. Based on insights from post-structuralism as well as cognitive and general constructivist perspectives it argues that a frame-based corpus linguistic analysis offers the possibility of investigating the collective/social meaning(s) of global in order to operationalize them for the analysis of the ‘global dimension’ of contemporary politics.
Resumo:
Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.
Resumo:
OBJECTIVES: This study sought to establish an accurate and reproducible T(2)-mapping cardiac magnetic resonance (CMR) methodology at 3 T and to evaluate it in healthy volunteers and patients with myocardial infarct. BACKGROUND: Myocardial edema affects the T(2) relaxation time on CMR. Therefore, T(2)-mapping has been established to characterize edema at 1.5 T. A 3 T implementation designed for longitudinal studies and aimed at guiding and monitoring therapy remains to be implemented, thoroughly characterized, and evaluated in vivo. METHODS: A free-breathing navigator-gated radial CMR pulse sequence with an adiabatic T(2) preparation module and an empirical fitting equation for T(2) quantification was optimized using numerical simulations and was validated at 3 T in a phantom study. Its reproducibility for myocardial T(2) quantification was then ascertained in healthy volunteers and improved using an external reference phantom with known T(2). In a small cohort of patients with established myocardial infarction, the local T(2) value and extent of the edematous region were determined and compared with conventional T(2)-weighted CMR and x-ray coronary angiography, where available. RESULTS: The numerical simulations and phantom study demonstrated that the empirical fitting equation is significantly more accurate for T(2) quantification than that for the more conventional exponential decay. The volunteer study consistently demonstrated a reproducibility error as low as 2 ± 1% using the external reference phantom and an average myocardial T(2) of 38.5 ± 4.5 ms. Intraobserver and interobserver variability in the volunteers were -0.04 ± 0.89 ms (p = 0.86) and -0.23 ± 0.91 ms (p = 0.87), respectively. In the infarction patients, the T(2) in edema was 62.4 ± 9.2 ms and was consistent with the x-ray angiographic findings. Simultaneously, the extent of the edematous region by T(2)-mapping correlated well with that from the T(2)-weighted images (r = 0.91). CONCLUSIONS: The new, well-characterized 3 T methodology enables robust and accurate cardiac T(2)-mapping at 3 T with high spatial resolution, while the addition of a reference phantom improves reproducibility. This technique may be well suited for longitudinal studies in patients with suspected or established heart disease.
Resumo:
INTRODUCTION Cutaneous candidiasis is a disease that affects children as well as adults. The presentation may be localized or systemic, and with multiple etiological agents. The most prevalent infecting species in children differs from that of the adult. OBJECTIVE A case is presented where a congenital cutaneous candidiasis was transmitted to the child during birth. MATERIALS AND METHODS A full term newborn was exposed to a subclinical vaginal candidiasis infection, and 24 hr after birth, developed congenital cutaneous candidiasis. The etiological agent was Candida albicans, and was associated with sepsis and respiratory distress. Blood cultures, cutaneous biopsy of vesicular lesions, blood tests and lumbar puncture were performed. RESULTS Biochemistry and blood count showed a CRP of 5.7 mg/dl, leukocytosis with left shift and mild anemia. After 24 hr, the blood analyses showed an increase in a CRP (7.8 mg/dl) and increased progressively for three days; consequently, a lumbar puncture was performed. Blood culture was positive for Staphylococcus aureus. Cutaneous biopsy confirmed the cutaneous candidiasis. CONCLUSIONS The early diagnosis is essential to prevent complications derived by the Candida albicans in newborns.
Resumo:
BACKGROUND: Topiramate (Topamax(R)) is an anti-epileptic drug of the sulfamate group used secondarily for bipolar disease. HISTORY AND SIGNS: One week after initiation of topiramate treatment for a bipolar disorder, a 57-year-old man presented with blurred vision. Clinical examination revealed a bilateral conjunctivitis, areflexic mydriasis, severe anterior chamber shallowing, with a myopic shift and vitritis. THERAPY AND OUTCOME: A spinal tap revealed an increased protein content of 1581 mg/L on cerebrospinal fluid (CSF) analysis, being compatible with a rupture of the blood-brain barrier (BBB). UBM exposed bilateral ciliochoroidal effusions with secondary angle-closure. Topiramate was promptly discontinued, whereas visual acuity, intraocular pressure (IOP), and anterior and posterior segments anatomy normalized within 1 week. One month later, bilateral iris atrophy was present. CONCLUSION: The presence of BBB disruption with increased protein content in CSF with simultaneous blood ocular barrier breakdown may suggest a common inflammatory mechanism.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
PURPOSE: To investigate the utility of inversion recovery with ON-resonant water suppression (IRON) to create positive signal in normal lymph nodes after injection of superparamagnetic nanoparticles. MATERIALS AND METHODS: Experiments were conducted on six rabbits, which received a single bolus injection of 80 mumol Fe/kg monocrystalline iron oxide nanoparticle (MION-47). Magnetic resonance imaging (MRI) was performed at baseline, 1 day, and 3 days after MION-47 injection using conventional T(1)- and T(2)*-weighted sequences and IRON. Contrast-to-noise ratios (CNR) were measured in blood and in paraaortic lymph nodes. RESULTS: On T(2)*-weighted images, as expected, signal attenuation was observed in areas of paraaortic lymph nodes after MION-47 injection. However, using IRON the paraaortic lymph nodes exhibited very high contrast enhancement, which remained 3 days after injection. CNR with IRON was 2.2 +/- 0.8 at baseline, increased markedly 1 day after injection (23.5 +/- 5.4, P < 0.01 vs. baseline), and remained high after 3 days (21.8 +/- 5.7, *P < 0.01 vs. baseline). CNR was also high in blood 1 day after injection (42.7 +/- 7.2 vs. 1.8 +/- 0.7 at baseline, P < 0.01) but approached baseline after 3 days (1.9 +/- 1.4, P = NS vs. baseline). CONCLUSION: IRON in conjunction with superparamagnetic nanoparticles can be used to perform 'positive contrast' MR-lymphography, particularly 3 days after injection of the contrast agent, when signal is no longer visible within blood vessels. The proposed method may have potential as an adjunct for nodal staging in cancer screening.
Resumo:
Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.
Resumo:
As technology evolves, vital resources shift, and the state’s population diversifies, Public Safety will have a unique opportunity to show our integrity, values, and worth to the citizens of Iowa. To take advantage of this unique moment in history, and will remain committed to, proactive and on-going strategic mapping. This strategic work will always be guided by Public Safety’s mission and core values, as well as by our responsibility to support local Police Departments and Sheriff’s Offices.
Resumo:
Loss-of-function mutations in the gene SCN5A can cause Brugada syndrome (BrS), which is an inherited form of idiopathic ventricular fibrillation. We report the case of a 46-year-old patient, with no previous medical history, who had ventricular fibrillation after accidental inhalation of gasoline vapors. His electrocardiogram (ECG) showed a typical type-1 BrS pattern that persisted after the acute event. Genetic investigations allowed the identification of a novel SCN5A mutation leading to a frame-shift and early termination of the channel protein. Biochemical and cellular electrophysiology experiments confirmed the loss-of-function of the mutant allele. The patient was implanted with a cardioverter/defibrillator.
Resumo:
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.
Resumo:
The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat with a mutated Lpin1 gene (Lpin11Hubr ), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin11Hubr rats are characterized by hindlimb paralysis that is detectable from the second postnatal week. Sequencing of Lpin1 identified a missense mutation in the 5'-end splice site of exon 18 resulting in mis-splicing, a reading frame shift and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. As a consequence, Lpin11Hubr rats develop hypomyelination rather than the pronounced demyelination defect characteristic of Lpin1fld/fld mice, which carry a null allele for Lpin1. Furthermore, histological and molecular analyses revealed that this lesion improve in older Lpin11Hubr rats as compared to young Lpin11Hubr rats and Lpin1fld/fld mice. The observed differences between the murine Lpin1fld/fld mutant, with a complete loss of Lipin 1 function, and the Lpin1Hubr rat, with a truncated PAP1 activitydeficient form of Lipin 1, provide additional evidence for suggested non-enzymatic Lipin1 function residing outside of its PAP1 domain. While we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into pathogenicity of recently identified human Lpin1 mutations. *These authors contributed equally.