950 resultados para void


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ashes are used to improve the properties of expansive soils. The paper brings out the effect of two different fly ashes containig different lime contents on shrinkage and swelling behaviour of expansive Indian Black cotton soil. Since the specific gravities of the fly ashes are considerably different,Void ratio at shrinkage limit and % of swelling are used to describe the shrinkage and swell behaviour of soils. Both fly ashes increase the shrinkage void ratio and decrease the % swell of the soil. While high lime fly ash is more effective in increasing the shrinkage void ratio, low lime flyash is more effective in reducing the swelling. Lime content which causes floculation of soil particle, is responsible for the differences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A molecular dynamics simulation study of aqueous solution of LiCl is reported as a function of pressure. Experimental measurements of conductivity of Li+ ion as a function of pressure shows an increase in conductivity with pressure. Our simulations are able to reproduce the observed trend in conductivity. A number of relevant properties have been computed in order to understand the reasons for the increase in conductivity with pressure. These include radial distribution function, void and neck distributions, hydration or coordination numbers, diffusivity, velocity autocorrelation functions, angles between ion-oxygen and dipole of water as well as OH vector, mean residence time for water in the hydration shell, etc. These show that the increase in pressure acts as a structure breaker. The decay of the self part of the intermediate scattering function at small wave number k shows a bi-exponential decay at 1 bar which changes to single exponential decay at higher pressures. The k dependence of the ratio of the self part of the full width at half maximum of the dynamic structure factor to 2Dk(2) exhibits trends which suggest that the void structure of water is playing a role. These support the view that the changes in void and neck distributions in water can account for changes in conductivity or diffusivity of Li+ with pressure. These results can be understood in terms of the levitation effect. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4756909]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several experimental studies have shown that fracture surfaces in brittle metallic glasses (MGs) generally exhibit nanoscale corrugations which may be attributed to the nucleation and coalescence of nanovoids during crack propagation. Recent atomistic simulations suggest that this phenomenon is due to large spatial fluctuations in material properties in a brittle MG, which leads to void nucleation in regions of low atomic density and then catastrophic fracture through void coalescence. To explain this behavior, we propose a model of a heterogeneous solid containing a distribution of weak zones to represent a brittle MG. Plane strain continuum finite element analysis of cavitation in such an elastic-plastic solid is performed with the weak zones idealized as periodically distributed regions having lower yield strength than the background material. It is found that the presence of weak zones can significantly reduce the critical hydrostatic stress for the onset of cavitation which is controlled uniquely by the local yield properties of these zones. Also, the presence of weak zones diminishes the sensitivity of the cavitation stress to the volume fraction of a preexisting void. These results provide plausible explanations for the observations reported in recent atomistic simulations of brittle MGs. An analytical solution for a composite, incompressible elastic-plastic solid with a weak inner core is used to investigate the effect of volume fraction and yield strength of the core on the nature of cavitation bifurcation. It is shown that snap-cavitation may occur, giving rise to sudden formation of voids with finite size, which does not happen in a homogeneous plastic solid. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bentonite clays are proven to be attractive as buffer and backfill material in high-level nuclear waste repositories around the world. A quick estimation of swelling pressures of the compacted bentonites for different clay-water-electrolyte interactions is essential in the design of buffer and backfill materials. The theoretical studies on the swelling behavior of bentonites are based on diffuse double layer (DDL) theory. To establish theoretical relationship between void ratio and swelling pressure (e versus P), evaluation of elliptic integral and inverse analysis are unavoidable. In this paper, a novel procedure is presented to establish theoretical relationship of e versus P based on the Gouy-Chapman method. The proposed procedure establishes a unique relationship between electric potentials of interacting and non-interacting diffuse clay-water-electrolyte systems. A procedure is, thus, proposed to deduce the relation between swelling pressures and void ratio from the established relation between electric potentials. This approach is simple and alleviates the need for elliptic integral evaluation and also the inverse analysis. Further, application of the proposed approach to estimate swelling pressures of four compacted bentonites, for example, MX 80, Febex, Montigel and Kunigel V1, at different dry densities, shows that the method is very simple and predicts solutions with very good accuracy. Moreover, the proposed procedure provides continuous distributions of e versus P and thus it is computationally efficient when compared with the existing techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacancy, void incorporation and Si-H-x configuration in hydrogenated amorphous silicon (a-Si:H) thin films was studied. Films were grown by Direct Current (DC), pulsed DC and Radio Frequency (RF) magnetron sputtering. Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the films and found that, the a-Si: H films grown by DC magnetron sputtering are of good quality compared to pulsed DC and RF deposited films. The effect of Substrate temperature (T-S) on the total hydrogen concentration (C-H), configuration of hydrogen bonding, density (decided by the vacancy and void incorporation) and the microstructure factor (R*) was studied. T-S is found to be an active parameter in affecting the above said properties of the films. The films contain both vacancies and voids. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. It is found that T-S favors monohydride (Si-H) bonding at the cost of dihydride (Si-H-2) bonding. This dividing line is at C-H=14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be zero for as deposited DC films at T-S=773K. The threshold C-H for void dominated region is found to be C-H=23 at.% H for RF, C-H=18 at.% H for PDC and C-H similar to 14 at.%H for DC sputter deposited films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with experimental investigations aiming at specifying optimum soil grading limits for the production of cement stabilised soil bricks (CSSB). Wide range of soil grading curves encompassing both fine and coarse grained soils were considered. Strength, durability and absorption characteristics of CSSB were examined considering 14 different types of soil grading curves and three cement contents. The investigations show that there is optimum clay content for the soil mix which yields maximum compressive strength for CSSB and the optimum clay content is about 10 and 14 % for fine grained and coarse grained soils respectively. Void ratio of the compacted specimens is the lowest at the optimum clay content and therefore possesses maximum strength at that point. CSSB using fine grained soils shows higher strength and better durability characteristics when compared to the bricks using coarse grained soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic analysis techniques have been proposed to detect potential deadlocks. Analyzing and comprehending each potential deadlock to determine whether the deadlock is feasible in a real execution requires significant programmer effort. Moreover, empirical evidence shows that existing analyses are quite imprecise. This imprecision of the analyses further void the manual effort invested in reasoning about non-existent defects. In this paper, we address the problems of imprecision of existing analyses and the subsequent manual effort necessary to reason about deadlocks. We propose a novel approach for deadlock detection by designing a dynamic analysis that intelligently leverages execution traces. To reduce the manual effort, we replay the program by making the execution follow a schedule derived based on the observed trace. For a real deadlock, its feasibility is automatically verified if the replay causes the execution to deadlock. We have implemented our approach as part of WOLF and have analyzed many large (upto 160KLoC) Java programs. Our experimental results show that we are able to identify 74% of the reported defects as true (or false) positives automatically leaving very few defects for manual analysis. The overhead of our approach is negligible making it a compelling tool for practical adoption.