944 resultados para ultrafast optics
Resumo:
An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.
Resumo:
The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.
Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.
The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.
Resumo:
Ultrafast temporal pattern generation and recognition with femtosecond laser technology is presented, analyzed, and experimentally implemented. Ultrafast temporal pattern generation and recognition are realized by taking advantage of two well-known techniques: the space-time conversion technique and the ultrafast pulse measurement technique. Here the temporal pattern for the designed multiple pulses, optimized with a preassumed Gaussian spectral distribution of an ultrashort pulse, is described. With the simulation of a Gaussian spectral distribution, we realize that the uniformity of the generated multiple ultrafast temporal pulses is relevant to the repeated number of modulation periods in the mask in the spectral plane. Moreover, the change of Gaussian spectral phases with the wavelengths in the modulated phase plate is considered. Experiments of ultrafast temporal pattern recognition by the frequency-resolved optical gating (FROG) characterization technique are also given. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.
Resumo:
As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%. (c) 2006 Optical Society of America.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
This paper summarized the recent research results of Changhe Zhou's group of Information Optics Lab in Shanghai Institute of Optics and Fine Mechanics (SIOM). The first is about the Talbot self-imaging research. We have found the symmetry rule, the regular-rearranged neighboring phase difference rule and the prime-number decamping rule, which is briefly summarized in a recent educational publication of Optics and Photonics News, pp.46-50, November 2004. The second is about four novel microoptical gratings designed and fabricated in SIOM. The third is about the design and fabrication of novel supperresolution phase plates for beam shaping and possible use in optical storage. The fourth is to develop novel femtosecond laser information processing techniques by incorporating microoptical elements, for example, use of a pair of reflective Dammann gratings for splitting the femtosecond laser pulses. The most attractive feature of this approach is that the conventional beam splitter is avoided. The conventional beam splitter would introduce the unequal dispersion due to the broadband spectrum of ultrashort laser pulses, which will affect the splitting result. We implemented the Dammann splitting apparatus by using two-layered reflective Dammann gratings, which generates the almost same array without angular dispersion. We believe that our device is highly interesting for splitting femtosecond laser pulses.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
Ultrafast lasers ablation of Cr film was investigated by using double-pulse method. Experimental results show that there exists a temporal ablation window effect with each of the double pulses adjusted just smaller than the threshold. When the delay between the double pulses is within the order of 400 ps, the ablation of Cr film could happen. When the delay between the double pulses is beyond the order of 400 ps, the ablation of Cr film would not happen, and the reflectivity from the surface of the Cr film shows a sharp rise at the same time. The two-temperature model was developed into the form of double pulses to explain the experimental phenomena. Furthermore, microbump structures were formed on the surface of Cr film after ablation by ultrafast double pulses. Their heights exhibit an obvious drop between 1 and 10 ps double pulses delay, which is involved with the electron-phonon coupling process according to the numerical simulation. These results should be helpful for understanding the dynamic processes during ultrafast lasers ablation of metal films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Computational imaging is flourishing thanks to the recent advancement in array photodetectors and image processing algorithms. This thesis presents Fourier ptychography, which is a computational imaging technique implemented in microscopy to break the limit of conventional optics. With the implementation of Fourier ptychography, the resolution of the imaging system can surpass the diffraction limit of the objective lens's numerical aperture; the quantitative phase information of a sample can be reconstructed from intensity-only measurements; and the aberration of a microscope system can be characterized and computationally corrected. This computational microscopy technique enhances the performance of conventional optical systems and expands the scope of their applications.