985 resultados para trans-4-methacryloyloxy azobenzene
Resumo:
The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The nor-clerodane diterpene trans-crotonin isolated from the bark of Croton cajucara BENTH. was investigated for its ability to prevent the formation of gastric-mucosa ulceration in different experimental models in mice. The results obtained from crotonin were compared with those obtained with another diterpene, DHC (trans-dehydrocrotonin) in the same models. When previously administered (p.o.) at the dose of 100 mg/kg, crotonin, as well as DHC, significantly reduced (p<0.05) gastric injury induced by stress (72, 67%), indomethacin/bethanechol (78, 29%) and pylorus ligature (35, 30%). In the HCl/ethanol-induced gastric ulcer model, at oral doses of 100 and 250 mg/kg, crotonin significantly prevented (p<0.05) the formation of gastric lesions by 51 and 56%, respectively, when compared to the control group. Gastric injury was also of significantly less magnitude in the DHC treatment group (p<0.05). In the pylorus-ligature model, crotonin (p.o.), like cimetidine, increased the volume of gastric juice when compared to the control group (p<0.05). No significant modifications where found in gastric parameters such as pH or total acid content after oral crotonin treatment. However, systemic alterations were observed when crotonin (100 mg/kg) was previously administered intraduodenally to mice. We observed significant changes (p<0.001) in gastric-juice parameters such as an increase in volume and a decrease in gastric acidity. Those pre-treated with crotonin as well as with DHC did not increase free mucus production (p>0.05). The results suggest that crotonin presents a significant anti-ulcer effect when assessed in these ulcer-induced models. As with DHC, the antiulcerogenic effects of crotonin are probably related to anti-secretory or/and gastroprotective properties of this substance. In light of results obtained with DHC and natural trans-crotonin in the present study, we concluded that the A-ring of both diterpenes is not directly involved in the antiulcerogenic activity.
Resumo:
The stable free radical 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) is the only spin labeled amino acid that has been used to date to successfully label peptide sequences for structural studies. However, severe difficulty in coupling the subsequent amino acid has been the most serious shortcoming of this paramagnetic marker. This problem stems from the low nucleophilicity of TOAC's amine group towards the acylation reaction during peptide chain elongation. The present report introduces the alternative beta -amino acid 2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid (POAC), potentially useful in peptide and protein chemistry. Investigations aimed at addressing the stereochemistry of this cyclic molecule through X-ray diffraction measurements of crystalline and bulk samples revealed that it consists only of the trans conformer. The 9-fluorenylmethyloxyearbonyl group (Fmoc) was chosen for temporary protection of the POAC amine function, allowing insertion of the probe at any position in a peptide sequence. The vasoactive octapeptide angiotensin II (AII, DRVYIHPF) was synthesized by replacing Pro(7) with POAC. The reaction of Fmoc-POAC with the peptidyl-resin occurred smoothly, and the coupling of the subsequent amino acid showed a much faster reaction when compared with TOAC. POAC(7)-AII was obtained in good yield, demonstrating that, in addition to TOAC, POAC is a convenient amino acid for the synthesis of spin labeled peptide analogues. The present findings open the possibility of a wide range of chemical and biological applications for this novel beta -amino acid derivative, including structural investigations involving its differentiated bend-inducing characteristics.
Resumo:
The six-membered B(2)H(4) ring of the title compound, C(36)H(30)B(2)N(8), adopts a slightly distorted boat conformation, with the terminal B substituents in a trans orientation. One 3-phenylpyrazolyl group is in an equatorial position, whereas the second is in an axial position with respect to the plane defined by the B atoms.
Resumo:
trans-[Ru(NH3)4P(OEt)3H2O] 2+, trans-[Ru(NH3)4(P(OEt)3)]2+, and trans-[Ru(NH3)4P(OEt)3CO]2+ were photolyzed with light of 313 nm on the lowest energy ligand field excited state. Photoaquation of the thermally substitution inert ammonia is observed for all three complexes with φ ≅ 0.30 mol/einstein. trans-[Ru(NH3)4(P(OEt)3)2] 2+ undergoes P(OEt)3 photoaquation with φ ≅ 0.12 mol/einstein, while trans-[Ru(NH3)4P(OEt)3CO]2+ displays CO photoaquation with φ = 0.07 mol/einstein. The results suggest that the electronic configuration of the lowest energy excited state of these complexes have contributions from E and A2 states. Furthermore, in trans-[Ru(NH3)4P(OEt)3CO]2+ the photoaquation of CO is explained by depopulation of a bonding dπ orbital and population of a σ* orbital. © 1992 American Chemical Society.
Resumo:
The [Ru(NH3)5(H2O)]2+ and trans-[Ru(NH3)4SO2(H2O)]2+ complexes ions were immobilized on poly(4-vinylpyridine) (4-PVP) through reactions in aqueous solutions. The stability of the imobilized complexes was checked in aqueous solution in the pH 2.0-8.0 range. The number of pyridinic nitrogens in the polymer 4-PVP is 2.80±0.05 mmol/g according to nitrogen elemental analysis. Potentiometric titration experiments showed that the accessible nitrogen, in aqueous medium, was 0.94±0.02 mmol/g with a p Ka value of 7.4±0.2. In addition, ruthenium and sulfate analysis has demonstrated that about 15% of the accessible nitrogen sites are able to coordinate to the metal centers. The characterization of the immobilized complexes was made through diffuse electronic and infrared spectroscopies and differential pulse and cyclic voltammetries. © 1993 Plenum Publishing Corporation.
Resumo:
The pyH[trans-RuCl4(py)2](1) and pyH[trans-RuCl4(CO)(py)](2) complexes were synthesized and found to crystallize in space group P21/n, Z = 4 with a = 8.080(7), b = 22.503(7), c = 10.125(6) Å, β = 93.19(6)° for (1) and a = 7.821(1), b = 10.337(3), c = 19.763(3) Å, β = 93.07(1)° for (2). The structures were solved by Patterson and difference Fourier techniques and refined to R = 0.062 for (1) and R = 0.038 for (2). In both cases the Ru(III) ion is octahedrally coordinated to four co-planar chlorine atoms, the nitrogen of the pyridine rings or carbon from the carbon monoxide. Another protonated pyridine group, which forms the counter-cation completes the crystal structures. The UV-Vis absorption spectra show three bands: (1) 360 (ε = 1180 M-1 cm-1), 441 (ε = 3200 M-1 cm-1) and 532 nm (ε = 400 M-1 cm-1); (2) 315(ε = 1150 M-1 cm-1), 442 (ε = 3170 M-1 cm-1) and 530 nm (ε = 390 M-1 cm-1). The two higher energy bands were associated with ligand-to-metal charge transfer transitions and a third band at lower energy was assigned to a d-d transition. Low temperature EPR data confirmed the presence of the paramagnetically active Ru(III) and it is consistent with axial symmetry of the complexes. The position of the stretching CO band in complex (2) is discussed in terms of metal-CO backbonding.
Resumo:
The methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2′-chloro-4-nitroazobenzene (MMADR13), in its polyelectrolyte form, can be used to fabricate thin films by the layer-by-layer (LbL) technique just if one alternates this anionic polyelectrolyte with a cationic polyelectrolyte such as poly(allylamine hydrochloride) (PAH). Since PAH does not present any particular optical functionality, the main final film feature will came from the side chain DR13 azo-chromophore group due to its large nonlinear optical properties and photoisomerization capabilities. This work reports the electrooptic activity of MMADR13/DR13 LBL films, which arises from the high hiperpolarizability about the azo side chain group.
Resumo:
The triphenylphosphine (PPh3) displaces the acetonitrile from [PdCl2(CH3CN)2], and subsequent addition of the potassium cyanate causes substitution of the chloro ligand by NCO- to yield trans-[Pd(NCO)2(PPh3)2]. The complex was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 9.213(3)Å, b = 9.781(7)Å, c = 10.483(5)Å, α = 111.39(5)°, β = 93.49(3)°, γ = 103.81(4)°, V = 845.0(1)Å3, Z = 1. The coordination geometry around Pd(II) in this complex is nearly square-planar, with the ligands in a trans relationship. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
Background: Ethanol (EtOH) alters the all-trans-retinoic acid (ATRA) levels in some tissues. Retinol and ATRA are essential for cell proliferation, differentiation, and maintenance of prostate homeostasis. It has been suggested that disturbances in retinol/ATRA concentration as well as in the expression of retinoic acid receptors (RARs) contribute to benign prostate hyperplasia and prostate cancer. This study aimed to evaluate whether EtOH consumption is able to alter retinol and ATRA levels in the plasma and prostate tissue as well as the expression of RARs, cell proliferation, and apoptosis index. Methods: All animals were divided into 4 groups (n = 10/group). UChA: rats fed 10% (v/v) EtOH ad libitum; UChACo: EtOH-naïve rats without access to EtOH; UChB: rats fed 10% (v/v) EtOH ad libitum; UChBCo: EtOH-naïve rats without access to EtOH. Animals were euthanized by decapitation after 60 days of EtOH consumption for high-performance liquid chromatography and light microscopy analysis. Results: EtOH reduced plasma retinol concentration in both UChA and UChB groups, while the retinol concentration was not significantly different in prostate tissue. Conversely, plasma and prostate ATRA levels increased in UChB group compared with controls, beyond the up-regulation of RARβ and -γ in dorsal prostate lobe. Additionally, no alteration was found in cell proliferation and apoptosis index involving dorsal and lateral prostate lobe. Conclusions: We conclude that EtOH alters the plasma retinol concentrations proportionally to the amount of EtOH consumed. Moreover, high EtOH consumption increases the concentration of ATRA in plasma/prostate tissue and especially induces the RARβ and RARγ in the dorsal prostate lobe. EtOH consumption and increased ATRA levels were not associated with cell proliferation and apoptosis in the prostate. © 2012 by the Research Society on Alcoholism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)