585 resultados para sulphide
Resumo:
The OECD 14 d earthworm acute toxicity test was used to determine the toxicity of copper added as copper nitrate (Cu(NO3)(2)), copper sulphate (CuSO4) and malachite (Cu-2(OH)(2)(CO3)) to Eisenia fetida Savigny. Cu(NO3)(2), and CuSO4 were applied in both an aqueous (aq) and solid (s) form, Cu-2(OH)(2)(CO3) was added as a solid. Soil solution was extracted by centrifugation, and analysed for copper. Two extractants [0.01 M CaCl2 and 0.005 M diethylenetriminpentaacetic acid (DTPA)] were used as a proxy of the bioavailable copper fraction in the soil. For bulk soil copper content the calculated copper toxicity decreased in the order nitrate > sulphide > carbonate, the same order as decreasing solubility of the metal compounds. For Cu(NO3)(2) and CuSO4, the LC50s obtained were not significantly different when the compound was added in solution or solid form. There was a significant correlation between the soil solution copper concentration and the percentage earthworm mortality for all 3 copper compounds (P less than or equal to 0.05) indicating that the soil pore water copper concentration is important for determining copper availability and toxicity to E. fetida. In soil avoidance tests the earthworms avoided the soils treated with Cu(NO3)(2) (aq and s) and CuSO4 (aq and s), at all concentrations used (110-8750 mug Cu g(-1), and 600-8750 mug Cu g(-1) respectively). In soils treated with Cu-2(OH2)CO3, avoidance behaviour was exhibited at all concentrations greater than or equal to3500 mug Cu g(-1). There was no significant correlation between the copper extracted by either CaCl2 or DTPA and percentage mortality. These two extractants are therefore not useful indicators of copper availability and toxicity to E. fetida.
Resumo:
In a series of experiments the toxicity of lead to worms in soil was determined following the draft OECD earthworm reproduction toxicity protocol except that lead was added as solid lead nitrate, carbonate and sulphide rather than as lead nitrate solution as would normally be the case. The compounds were added to the test soil to give lead concentrations of 625-12500 pg Pb g-1 of soil. Calculated toxicities of the lead decreased in the order nitrate > carbonate > sulphide, the same order as the decrease in the solubility of the metal compounds used. The 7-day LC50 (lethal concentration when 50% of the population is killed) for the nitrate was 5321 +/- 275 mug Pb g(-1) of soil and this did not change with time. The LC50 values for carbonate and sulphide could not be determined at the concentration ranges used. The only parameter sensitive enough to distinguish the toxicities of the three compounds was cocoon (egg) production. The EC50S for cocoon production (the concentration to produce a 50% reduction in cocoon production) were 993, 8604 and 10 246 mug Pb g(-1) of soil for lead nitrate, carbonate and sulphide, respectively. Standard toxicity tests need to take into account the form in which the contaminant is present in the soil to be of environmental relevance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The requirement to rapidly and efficiently evaluate ruminant feedstuffs places increased emphasis on in vitro systems. However, despite the developmental work undertaken and widespread application of such techniques, little attention has been paid to the incubation medium. Considerable research using in vitro systems is conducted in resource-poor developing countries that often have difficulties associated with technical expertise, sourcing chemicals and/or funding to cover analytical and equipment costs. Such limitations have, to date, restricted vital feed evaluation programmes in these regions. This paper examines the function and relevance of the buffer, nutrient, and reducing solution components within current in vitro media, with the aim of identifying where simplification can be achieved. The review, supported by experimental work, identified no requirement to change the carbonate or phosphate salts, which comprise the main buffer components. The inclusion of microminerals provided few additional nutrients over that already supplied by the rumen fluid and substrate, and so may be omitted. Nitrogen associated with the inoculum was insufficient to support degradation and a level of 25 mg N/g substrate is recommended. A sulphur inclusion level of 4-5 mg S/g substrate is proposed, with S levels lowered through omission of sodium sulphide and replacement of magnesium sulphate with magnesium chloride. It was confirmed that a highly reduced medium was not required, provided that anaerobic conditions were rapidly established. This allows sodium sulphide, part of the reducing solution, to be omitted. Further, as gassing with CO2 directly influences the quantity of gas released, it is recommended that minimum CO, levels be used and that gas flow and duration, together with the volume of medium treated, are detailed in experimental procedures. It is considered that these simplifications will improve safety and reduce costs and problems associated with sourcing components, while maintaining analytical precision. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new silver-antimony sulphide, [C6H20N4][Ag5Sb3S8], has been synthesised solvothermally in the presence of triethylenetetramine and characterised by single-crystal X-ray diffraction, thermogravimetry and elemental analysis. The compound crystallises in the space group P2(1)/m (a = 6.2778(7), b = 15.8175(16) and c = 12.4617(15) angstrom and beta = 104.561(5)degrees) and adopts a structure in which honeycomb-like sheets of fused six-membered silver-antimony-sulphide rings are linked through Ag-S bonds to form double layers. The idealised structure can be considered to be derived from that of antifluorite and represents a second structure type for the [Ag5Sb3S8](2-) double layer. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the experimental results on the low temperature absorption and dispersion properties for a variety of frequently used infrared filter substrate materials. Index of refraction (n) and transmission spectra are presented for a range of temperatures 300-50 K for the Group IV materials silicon (Si) and germanium (Ge), and Group II-VI materials zinc selenide (ZnSe), zinc sulphide (ZnS) and cadmium telluride (CdTe). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.
Resumo:
The introduction of non-toxic fluride compounds as direct replacements for Thorium Fluoride (ThF4) has renewed interest in the use of low index fluoride compounds in high performance infrared filters. This paper reports the results of an investigation into the effects of combining these low index materials, particularly Barium Fluoride (BaF2), with the high index material Lead Telluride (PbTe) in bandpass and edge filters. Infrared filter designs using conventional and the new material ombination are compared, and infrared filters using these material combinations have been manufactured and have been shown to suffer problems with residual stress. A possible solution to this problem utilising Zinc Sulphide (ZnS) layers with compensating compressive stress is discussed.
Resumo:
With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.
Resumo:
The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a presentday direct aerosol forcing of −0.49Wm−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17Wm−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.
Resumo:
Imbalances in gut microbiota composition during ulcerative colitis (UC) indicate a role for the microbiota in propagating the disorder. Such effects were investigated using in vitro batch cultures (with/without mucin, peptone or starch) inoculated with faecal slurries from healthy or UC patients; the growth of five bacterial groups was monitored along with short-chain fatty acid (SCFA) production. Healthy cultures gave two-fold higher growth and SCFA levels with up to ten-fold higher butyrate production. Starch gave the highest growth and SCFA production (particularly butyrate), indicating starch-enhanced saccharolytic activity. Sulphate-reducing bacteria (SRB) were the predominant bacterial group (of five examined) for UC inocula whereas they were the minority group for the healthy inocula. Furthermore, SRB growth was stimulated by peptone presumably due to the presence of sulphur-rich amino acids. The results suggest raised SRB levels in UC, which could contribute to the condition through release of toxic sulphide.
Resumo:
Sulphide materials, in particular MoS2, have recently received great attention from the surface science community due to their extraordinary catalytic properties. Interestingly, the chemical activity of iron pyrite (FeS2) (the most common sulphide mineral on Earth), and in particular its potential for catalytic applications, has not been investigated so thoroughly. In this study, we use density functional theory (DFT) to investigate the surface interactions of fundamental atmospheric components such as oxygen and nitrogen, and we have explored the adsorption and dissociation of nitrogen monoxide (NO) and nitrogen dioxide (NO2) on the FeS2(100) surface. Our results show that both those environmentally important NOx species chemisorb on the surface Fe sites, while the S sites are basically unreactive for all the molecular species considered in this study and even prevent NO2 adsorption onto one of the non-equivalent Fe–Fe bridge sites of the (1 1)–FeS2(100) surface. From the calculated high barrier for NO and NO2 direct dissociation on this surface, we can deduce that both nitrogen oxides species are adsorbed molecularly on pyrite surfaces.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
Structural and conformational properties of the molecule bis[isopropoxy(thiocarbonyl)]sulfide, [(CH(3))(2)CHOC(S)](2)S, have been studied by vibrational spectroscopy (IR and Raman) and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets). The crystal and molecular structure of the title compound was determined by X-ray diffraction methods. It crystallizes in the monoclinic C2/c space group with a = 8.4007(4), b = 13.5936(5), c = 10.3648(5) angstrom, beta = 106.024(4)degrees and Z = 4 molecules per unit cell. The molecules are sited on a crystallographic twofold axis passing through the sulphide atom and arranged in layers perpendicular to the b-axis. The solid state IR and Raman spectra of the compound give no sign of any other rotamer. (C) 2009 Elsevier B.V. All rights reserved.