981 resultados para substitution reactions on phosphane ligands
Resumo:
It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations. This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular, a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for understanding variation in substitution rates within and between lineages.
Resumo:
Purpose/Objective: The family of histone deacetylases comprises 18 members in mammals, among which seven sirtuins (SIRT1-7). Sirtuins are NADP-dependent enzymes that have been involved in the control of cell metabolism, proliferation and survival. The expression pattern of sirtuins and their influence on host response to microbial infection remain largely unknown. The aim of the study was to analyze the expression of SIRT1-7 and to address the effects of SIRT1/2 inhibition on innate immune responses in vitro and in vivo.. Materials and methods: in vitro: Bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and RAW 264.7 and J774.1 macrophage cell lines were stimulated for 0, 2, 6 and 18 h with LPS, Pam3CSK4 and CpG ODN. SIRT1-7 mRNA was quantified by real time-PCR. TNF was measured by ELISA. In vivo: BALB/c mice were challenged with LPS (350 lg i.p.) with or without a SIRT1/2 inhibitor. Blood and organs were collected after 0, 1, 4, 8 and 24 h to quantify SIRT1-7 and TNF. Mortality was assessed daily. Results: Bone marrow, macrophages and DCs express, in order of abundance, SIRT2 > > SIRT1, SIRT3 and SIRT6 > SIRT4, SIRT5 and SIRT7. Microbial products decrease the expression of all sirtuins except SIRT6 in a time dependent manner in BMDMs (0_24 h). SIRT2 is the most expressed sirtuin also in the liver, kidney (together with SIRT3) and spleen. Upon LPS challenge, SIRT1, SIRT3, SIRT4 and SIRT7 mRNA levels decrease in the liver (from 4 h to 24 h), whereas SIRT1-7 mRNA levels decrease within 1 h in both kidney and spleen. Pharmacological inhibition of SIRT1/2 decreases TNF production by macrophages stimulated with LPS, Pam3CSK4 and CpG ODN (n = 6; P < 0.001). In agreement, prophylactic treatment with a SIRT1/2 inhibitor decreases TNF production (n = 8; P = 0.04) and increases survival (n = 13, P = 0.03) of mice challenged with LPS. Conclusions: Sirtuins are expressed in innate immune cells. Inhibition of SIRT1/2 activity decreases cytokine production by macrophages and protects from endotoxemia, suggesting that sirtuin inhibitors may represent novel adjunctive therapy for treating inflammatory disorders such as sepsis.
Resumo:
CONTEXTE: Les sélectines sont une famille de trois protéines qui règlent la capture et le roulement des leucocytes et qui initient la cascade d'adhésion. Elles contrôlent également la migration des leucocytes en réponse à un stimulus physiologique ou inflammatoire pour atteindre un organe cible. Le rôle des sélectines et des leurs ligands est bien connu dans l'adhésion des leucocytes normaux à l'endothélium; en revanche, la nature des ligands des sélectines exprimés par les cellules leucémiques et le myélome multiple est peu connue. La récente découverte que la E- et la P-sélectine sont exprimées par les cellules endothéliales et du stroma de la moelle osseuse, nous a incité à examiner leur rôle dans les interactions des cellules malignes avec leur environnement médullaire. RÉSULTATS: Les analyses ont été conduites sur les cellules du sang ou de la moelle osseuse prélevées à des patients atteints de leucémie aiguë ou de myélome multiple et sur des lignées cellulaires. Les ligands des sélectines qui ont été identifiés sur les blastes leucémiques ou les plasmocytes, sont « P-selectin glycoprotein ligand-1 » (PSGL-1), CD44, CD43 et l'endoglycan (EGC), ainsi que les saccharides fucosylés sLex et CLA. Nous avons vérifié dans des expériences d'adhésion cellulaire effectuées dans des conditions de flux que ces ligands sont fonctionnels, étant porteurs des sucres mentionnés, et qu'ils sont capables de supporter le roulement cellulaire dépendant des sélectines. De plus, nous avons montré que la liaison de ces ligands génère des signaux intracellulaires favorisant la prolifération et la survie des cellules de myélome. CONCLUSION. Les données présentées ici montrent que la E- et la P- sélectine du microenvironnement médullaire interagissent avec les cellules leucémiques et de myélome multiple, et que ces interactions activent des voies de signalisation contrôlant la prolifération et la survie cellulaire. Ces effets protecteurs sont impliqués dans la persistance de clones cellulaires malins résistant aux traitements et peuvent conduire à la récidive de la maladie. L'inhibition de ces interactions pourrait fournir de nouvelles options thérapeutiques pour le traitement de ces maladies de mauvais pronostic. - BACKGROUND: Selectins are a family of glycoproteins involved in the first steps of the adhesion cascade, tethering and rolling, during which leukocytes sense tissue specific signals and commit the cells to enter in a particular organ or inflammation site. While the role of selectins and their ligands is well established in supporting normal leukocyte adhesion to vascular endothelium, our knowledge of selectin ligands in two hematological malignancies, acute leukemia and multiple myeloma, is incomplete. The recent discovery that E- and P- selectin are also expressed on bone marrow (BM) endothelial and stromal cells, prompted us to investigate a potential role in selectin-mediated interaction of malignant cells with its protective BM microenvironment. RESULTS. Using cells obtained from blood or BM of patients affected by acute myeloid or lymphoblastic leukemia, or multiple myeloma, as well as cell lines, we characterized the expression of selectin ligands on blasts and plasma cells and identified P-selectin glycoprotein ligand-1 (PSGL-1), CD44, CD43 and endoglycan (EGC), as well as sLex/CLA determinants. Rolling assays under flow conditions allowed us to verify that these ligands are functional, i.e. correctly glycosylated and able to support selectin-mediated rolling. Moreover, we demonstrated that these ligands trigger proliferation and pro-survival signals upon engagement on myeloma cells. CONCLUSIONS. Data presented here demonstrate that E- and P-selectin in the BM microenvironment interact with leukemia and myeloma cells, and suggest that they have an impact on proliferation and survival of malignant plasma cells. These protective effects may induce drug resistance in malignant clones, leading to disease relapse. Interfering with these interactions could provide new therapeutic options. - Le corps humain dépend du système immunitaire pour sa protection face aux agressions, notamment des bactéries ou des virus, ou face à une dysfonction de l'organisme. Ce système est composé de plusieurs types cellulaires, regroupés sous le nom de leucocytes, qui participent à son fonctionnement. Ces cellules se développent à partir d'une cellule souche hématopo'iétique commune qui réside dans la moelle osseuse. Comme c'est le cas dans les autres tissus, les cellules du système immunitaire peuvent aussi développer des cancers, appelés tumeurs hématopoïétiques ou tumeurs du sang. Bien que ces maladies puissent être traitées avec succès grâce à de fortes doses de chimiothérapies ou à d'autres moyens comme les greffes, les patients connaissent un fort taux de rechute. La raison de ces récidives est la survie d'une partie des cellules malignes dans la moelle osseuse, où elles reçoivent une protection au traitement par le biais de l'interaction avec d'autres cellules. Les sélectines (E-, P- et L-sélectine) régulent l'interaction des leucocytes avec l'endothélium (la paroi des vaisseaux sanguins), d'autres leucocytes et les plaquettes ; ces interactions surviennent quand les leucocytes atteignent un site d'inflammation ou un organe cible. Dans la moelle osseuse, la E- et la P-sélectine se trouvent sur les cellules de l'endothélium et sur les macrophages, qui sont d'autres leucocytes faisant partie du stroma de la moelle. Elles pourraient être impliquées dans la protection des cellules cancéreuses évoquée plus haut. Les molécules d'adhésion avec lesquelles les sélectines s'associent, autrement dit les ligands des sélectines, sont des glycoprotéines. Ces protéines ont besoin de sucres spécifiques pour acquérir une telle capacité d'adhésion. Dans le cadre de cette thèse, nous avons étudié deux types de cellules extraites du sang et de la moelle osseuse des patients atteints d'une leucémie aiguë (les blastes) ou de myélome multiple (les plasmocytes), et leur capacité à se lier aux sélectines. Nous avons démontré une interaction entre ces cellules malignes et la E- et/ou la P-sélectine, à condition que les ligands soient correctement décorés. De plus, lors que les plasmocytes se lient aux sélectines, une cascade de signaux à l'intérieur des cellules stimule leur prolifération et leur survie. L'ensemble de ces résultats permet l'identification de nouvelles cibles thérapeutiques potentielles de ces hémopathies de mauvais pronostic.
Resumo:
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.
Resumo:
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.
Resumo:
Interactions between the leukocyte adhesion receptor L-selectin and P-selectin glycoprotein ligand-1 play an important role in regulating the inflammatory response by mediating leukocyte tethering and rolling on adherent leukocytes. In this study, we have examined the effect of post-translational modifications of PSGL-1 including Tyr sulfation and presentation of sialylated and fucosylated O-glycans for L-selectin binding. The functional importance of these modifications was determined by analyzing soluble L-selectin binding and leukocyte rolling on CHO cells expressing various glycoforms of PSGL-1 or mutant PSGL-1 targeted at N-terminal Thr or Tyr residues. Simultaneous expression of core-2 beta1,6-N-acetylglucosaminyltransferase and fucosyltransferase VII was required for optimal L-selectin binding to PSGL-1. Substitution of Thr-57 by Ala but not of Thr-44, strongly decreased L-selectin binding and leukocyte rolling on PSGL-1. Substitution of Tyr by Phe revealed that PSGL-1 Tyr-51 plays a predominant role in mediating L-selectin binding and leukocyte rolling whereas Tyr-48 has a minor role, an observation that contrasts with the pattern seen for the interactions between PSGL-1 and P-selectin where Tyr-48 plays a key role. Molecular modeling analysis of L-selectin and P-selectin interactions with PSGL-1 further supported these observations. Additional experiments showed that core-2 O-glycans attached to Thr-57 were also of critical importance in regulating the velocity and stability of leukocyte rolling. These observations pinpoint the structural characteristics of PSGL-1 that are required for optimal interactions with L-selectin and may be responsible for the specific kinetic and mechanical bond properties of the L-selectin-PSGL-1 adhesion receptor-counterreceptor pair.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.
Resumo:
We describe the effect of guanidinylation of the aminoglycoside moiety on acridine-neamine-containing ligands for the stem-loop structure located at the exon 10-5′-intron junction of Tau pre-mRNA, an important regulatory element of tau gene alternative splicing. On the basis of dynamic combinatorial chemistry experiments, ligands that combine guanidinoneamine and two different acridines were synthesized and their RNA-binding properties were compared with those of their amino precursors. Fluorescence titration experiments and UV-monitored melting curves revealed that guanidinylation has a positive effect both on the binding affinity and specificity of the ligands for the stemloop RNA, as well as on the stabilization of all RNA sequences evaluated, particularly some mutated sequences associated with the development of FTDP-17 tauopathy. However, this correlation between binding affinity and stabilization due to guanidinylation was only found in ligands containing a longer spacer between the acridine and guanidinoneamine moieties, since a shorter spacer produced the opposite effect (e.g. lower binding affinity and lower stabilization). Furthermore, spectroscopic studies suggest that ligand binding does not significantly change the overall RNA structure upon binding (circular dichroism) and that the acridine moiety might intercalate near the bulged region of the stem->loop structure (UV-Vis and NMR spectroscopy).
Resumo:
OBJECTIVES: Specifically we aim to demonstrate that the results of our earlier safety data hold true in this much larger multi-national and multi-ethnical population. BACKGROUND: We sought to re-evaluate the frequency, manifestations, and severity of acute adverse reactions associated with administration of several gadolinium- based contrast agents during routine CMR on a European level. METHODS: Multi-centre, multi-national, and multi-ethnical registry with consecutive enrolment of patients in 57 European centres. RESULTS: During the current observation 37,788 doses of Gadolinium based contrast agent were administered to 37,788 patients. The mean dose was 24.7 ml (range 5-80 ml), which is equivalent to 0.123 mmol/kg (range 0.01 - 0.3 mmol/kg). Forty-five acute adverse reactions due to contrast administration occurred (0.12%). Most reactions were classified as mild (43 of 45) according to the American College of Radiology definition. The most frequent complaints following contrast administration were rashes and hives (15 of 45), followed by nausea (10 of 45) and flushes (10 of 45). The event rate ranged from 0.05% (linear non-ionic agent gadodiamide) to 0.42% (linear ionic agent gadobenate dimeglumine). Interestingly, we also found different event rates between the three main indications for CMR ranging from 0.05% (risk stratification in suspected CAD) to 0.22% (viability in known CAD). CONCLUSIONS: The current data indicate that the results of the earlier safety data hold true in this much larger multi-national and multi-ethnical population. Thus, the "off-label" use of Gadolinium based contrast in cardiovascular MR should be regarded as safe concerning the frequency, manifestation and severity of acute events.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
Two simple sensitive and cost-effective spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsules using ceric ammonium sulphate (CAS), iron (II), orthophenanthroline and thiocyanate as reagents. In both methods, an acidic solution of lansoprazole is treated with a measured excess of CAS followed by the determination of unreacted oxidant by two procedures involving different reaction schemes. The first method involves the reduction of residual oxidant by a known amount of iron(II), and the unreacted iron(II) is complexed with orthophenanthroline at a raised pH, and the absorbance of the resulting complex measured at 510 nm (method A). In the second method, the unreacted CAS is reduced by excess of iron (II), and the resulting iron (III) is complexed with thiocyanate in the acid medium and the absorbance of the complex measured at 470 nm (method B). In both methods, the amount CAS reacted corresponds to the amount of LPZ. In method A, the absorbance is found to increase linearly with the concentration of LPZ where as in method B a linear decrease in absorbance occurs. The systems obey Beer's law for 2.5-30 and 2.5-25 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 8.1×10³ and 1.5×10(4) L mol-1cm-1 . The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim. No interference was observed from the concomitant substances normally added to capsules.