972 resultados para strain energy
Resumo:
This paper presents seventy new experimental results from PMMA notched specimens tested under torsion at 60 C. The notch root radius ranges from 0.025 to 7.0 mm. At this temperature the non-linear effects previously observed on specimens of the same material tested at room temperature strongly reduce. The averaged value of the strain energy density over a control volume is used to assess the critical loads to failure. The radius of the control volume and the critical strain energy density are evaluated a priori by using in combination the mode III critical stress intensity factor from cracked-like specimens and the critical stress to failure detected from semicircular notches with a large notch root radius
Resumo:
We consider the finite radially symmetric deformation of a circular cylindrical tube of a homogeneous transversely isotropic elastic material subject to axial stretch, radial deformation and torsion, supported by axial load, internal pressure and end moment. Two different directions of transverse isotropy are considered: the radial direction and an arbitrary direction in planes normal locally to the radial direction, the only directions for which the considered deformation is admissible in general. In the absence of body forces, formulas are obtained for the internal pressure, and the resultant axial load and torsional moment on the ends of the tube in respect of a general strain-energy function. For a specific material model of transversely isotropic elasticity, and material and geometrical parameters, numerical results are used to illustrate the dependence of the pressure, (reduced) axial load and moment on the radial stretch and a measure of the torsional deformation for a fixed value of the axial stretch.
Resumo:
En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.
Resumo:
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance-based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column-weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake-table tests were conducted on a 2/5-scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of "immediate occupancy", with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved.
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear set- ting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy function which is additively composed by an isotropic neo-Hookean matrix and by an anisotropic fibre-reinforced material based on the model proposed by T. Gasser, R. Ogden, and G. Holzapfel.
Resumo:
En este trabajo se aborda una cuestión central en el diseño en carga última de estructuras de hormigón armado y de fábrica: la posibilidad efectiva de que las deformaciones plásticas necesarias para verificar un estado de rotura puedan ser alcanzadas por las regiones de la estructura que deban desarrollar su capacidad última para verificar tal estado. Así, se parte de las decisiones de diseño que mediante mera estática aseguran un equilibrio de la estructura para las cargas últimas que deba resistir, pero determinando directamente el valor de las deformaciones necesarias para llegar a tal estado. Por tanto, no se acude a los teoremas de rotura sin más, sino que se formula el problema desde un punto de vista elastoplástico. Es decir, no se obvia el recorrido que la estructura deba realizar en un proceso de carga incremental monótono, de modo que las regiones no plastificadas contribuyen a coaccionar las libres deformaciones plásticas que, en la teoría de rotura, se suponen. En términos de trabajo y energía, se introduce en el balance del trabajo de las fuerzas externas y en el de la energía de deformación, aquella parte del sistema que no ha plastificado. Establecido así el balance energético como potencial del sistema es cuando la condición de estacionariedad del mismo hace determinados los campos de desplazamientos y, por tanto, el de las deformaciones plásticas también. En definitiva, se trata de un modo de verificar si la ductilidad de los diseños previstos es suficiente, y en qué medida, para verificar el estado de rotura previsto, para unas determinadas cargas impuestas. Dentro del desarrollo teórico del problema, se encuentran ciertas precisiones importantes. Entre ellas, la verificación de que el estado de rotura a que se llega de manera determinada mediante el balance energético elasto-plástico satisface las condiciones de la solución de rotura que los teoremas de carga última predicen, asegurando, por tanto, que la solución determinada -unicidad del problema elásticocoincide con el teorema de unicidad de la carga de rotura, acotando además cuál es el sistema de equilibrio y cuál es la deformada de colapso, aspectos que los teoremas de rotura no pueden asegurar, sino sólo el valor de la carga última a verificar. Otra precisión se basa en la particularidad de los casos en que el sistema presenta una superficie de rotura plana, haciendo infinitas las posibilidades de equilibrio para una misma deformada de colapso determinada, lo que está en la base de, aparentemente, poder plastificar a antojo en vigas y arcos. Desde el planteamiento anterior, se encuentra entonces que existe una condición inherente a cualquier sistema, definidas unas leyes constitutivas internas, que permite al mismo llegar al inicio del estado de rotura sin demandar deformación plástica alguna, produciéndose la plastificación simultánea de todas las regiones que hayan llegado a su solicitación de rotura. En cierto modo, se daría un colapso de apariencia frágil. En tal caso, el sistema conserva plenamente hasta el final su capacidad dúctil y tal estado actúa como representante canónico de cualquier otra solución de equilibrio que con idéntico criterio de diseño interno se prevea para tal estructura. En la medida que el diseño se acerque o aleje de la solución canónica, la demanda de ductilidad del sistema para verificar la carga última será menor o mayor. Las soluciones que se aparten en exceso de la solución canónica, no verificarán el estado de rotura previsto por falta de ductilidad: la demanda de deformación plástica de alguna región plastificada estará más allá de la capacidad de la misma, revelándose una carga de rotura por falta de ductilidad menor que la que se preveía por mero equilibrio. Para la determinación de las deformaciones plásticas de las rótulas, se ha tomado un modelo formulado mediante el Método de los Elementos de Contorno, que proporciona un campo continuo de desplazamientos -y, por ende, de deformaciones y de tensiones- incluso en presencia de fisuras en el contorno. Importante cuestión es que se formula la diferencia, nada desdeñable, de la capacidad de rotación plástica de las secciones de hormigón armado en presencia de cortante y en su ausencia. Para las rótulas de fábrica, la diferencia se establece para las condiciones de la excentricidad -asociadas al valor relativo de la compresión-, donde las diferencias entres las regiones plastificadas con esfuerzo normal relativo alto o bajo son reseñables. Por otro lado, si bien de manera un tanto secundaria, las condiciones de servicio también imponen un límite al diseño previo en carga última deseado. La plastificación lleva asociadas deformaciones considerables, sean locales como globales. Tal cosa impone que, en estado de servicio, si la plastificación de alguna región lleva asociadas fisuraciones excesivas para el ambiente del entorno, la solución sea inviable por ello. Asimismo, las deformaciones de las estructuras suponen un límite severo a las posibilidades de su diseño. Especialmente en edificación, las deformaciones activas son un factor crítico a la hora de decidirse por una u otra solución. Por tanto, al límite que se impone por razón de ductilidad, se debe añadir el que se imponga por razón de las condiciones de servicio. Del modo anterior, considerando las condiciones de ductilidad y de servicio en cada caso, se puede tasar cada decisión de diseño con la previsión de cuáles serán las consecuencias en su estado de carga última y de servicio. Es decir, conocidos los límites, podemos acotar cuáles son los diseños a priori que podrán satisfacer seguro las condiciones de ductilidad y de servicio previstas, y en qué medida. Y, en caso de no poderse satisfacer, qué correcciones debieran realizarse sobre el diseño previo para poderlas cumplir. Por último, de las consecuencias que se extraen de lo estudiado, se proponen ciertas líneas de estudio y de experimentación para poder llegar a completar o expandir de manera práctica los resultados obtenidos. ABSTRACT This work deals with a main issue for the ultimate load design in reinforced concrete and masonry structures: the actual possibility that needed yield strains to reach a ultimate state could be reached by yielded regions on the structure that should develop their ultimate capacity to fulfill such a state. Thus, some statically determined design decisions are posed as a start for prescribed ultimate loads to be counteracted, but finding out the determined value of the strains needed to reach the ultimate load state. Therefore, ultimate load theorems are not taken as they are, but a full elasto-plastic formulation point of view is used. As a result, the path the structure must develop in a monotonus increasing loading procedure is not neglected, leading to the fact that non yielded regions will restrict the supposed totally free yield strains under a pure ultimate load theory. In work and energy terms, in the overall account of external forces work and internal strain energy, those domains in the body not reaching their ultimate state are considered. Once thus established the energy balance of the system as its potential, by imposing on it the stationary condition, both displacements and yield strains appear as determined values. Consequently, what proposed is a means for verifying whether the ductility of prescribed designs is enough and the extent to which they are so, for known imposed loads. On the way for the theoretical development of the proposal, some important aspects have been found. Among these, the verification that the conditions for the ultimate state reached under the elastoplastic energy balance fulfills the conditions prescribed for the ultimate load state predicted through the ultimate load theorems, assuring, therefore, that the determinate solution -unicity of the elastic problemcoincides with the unicity ultimate load theorem, determining as well which equilibrium system and which collapse shape are linked to it, being these two last aspects unaffordable by the ultimate load theorems, that make sure only which is the value of the ultimate load leading to collapse. Another aspect is based on the particular case in which the yield surface of the system is flat -i.e. expressed under a linear expression-, turning out infinite the equilibrium possibilities for one determined collapse shape, which is the basis of, apparently, deciding at own free will the yield distribution in beams and arches. From the foresaid approach, is then found that there is an inherent condition in any system, once defined internal constitutive laws, which allows it arrive at the beginning of the ultimate state or collapse without any yield strain demand, reaching the collapse simultaneously for all regions that have come to their ultimate strength. In a certain way, it would appear to be a fragile collapse. In such a case case, the system fully keeps until the end its ductility, and such a state acts as a canonical representative of any other statically determined solution having the same internal design criteria that could be posed for the that same structure. The extent to which a design is closer to or farther from the canonical solution, the ductility demand of the system to verify the ultimate load will be higher or lower. The solutions being far in excess from the canonical solution, will not verify the ultimate state due to lack of ductility: the demand for yield strains of any yielded region will be beyond its capacity, and a shortcoming ultimate load by lack of ductility will appear, lower than the expected by mere equilibrium. For determining the yield strains of plastic hinges, a Boundary Element Method based model has been used, leading to a continuous displacement field -therefore, for strains and stresses as well- even if cracks on the boundary are present. An important aspect is that a remarkable difference is found in the rotation capacity between plastic hinges in reinforced concrete with or without shear. For masonry hinges, such difference appears when dealing with the eccentricity of axial forces -related to their relative value of compression- on the section, where differences between yield regions under high or low relative compressions are remarkable. On the other hand, although in a certain secondary manner, serviceability conditions impose limits to the previous ultimate load stated wanted too. Yield means always big strains and deformations, locally and globally. Such a thing imposes, for serviceability states, that if a yielded region is associated with too large cracking for the environmental conditions, the predicted design will be unsuitable due to this. Furthermore, displacements must be restricted under certain severe limits that restrain the possibilities for a free design. Especially in building structures, active displacements are a critical factor when chosing one or another solution. Then, to the limits due to ductility reasons, other limits dealing with serviceability conditions shoud be added. In the foresaid way, both considering ductility and serviceability conditions in every case, the results for ultimate load and serviceability to which every design decision will lead can be bounded. This means that, once the limits are known, it is possible to bound which a priori designs will fulfill for sure the prescribed ductility and serviceability conditions, and the extent to wich they will be fulfilled, And, in case they were not, which corrections must be performed in the previous design so that it will. Finally, from the consequences derived through what studied, several study and experimental fields are proposed, in order to achieve a completeness and practical expansion of the obtained results.
Resumo:
Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress–strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it is in the physiological range. Another controversy is whether the vessel wall is biaxially isotropic. New data on canine aorta were obtained from a biaxial testing machine over a large range of finite strains referred to the zero-stress state. A new pseudo strain energy function is used to examine these questions critically. The stress–strain relationship derived from this function represents the sum of a linear stress–strain relationship and a definitely nonlinear relationship. This relationship fits the experimental data very well. With this strain energy function, we can define a parameter called the degree of nonlinearity, which represents the fraction of the nonlinear strain energy in the total strain energy per unit volume. We found that for the canine aorta, the degree of nonlinearity varies from 5% to 30%, depending on the magnitude of the strains in the physiological range. In the case of canine pulmonary artery in the arch region, Debes and Fung [Debes, J. C. & Fung, Y. C.(1995) Am. J. Physiol. 269, H433–H442] have shown that the linear regime of the stress–strain relationship extends from the zero-stress state to the homeostatic state and beyond. Both vessels, however, are anisotropic in both the linear and nonlinear regimes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
How can the accuracy of the calculated standard heats of formation Delta H-f(0) of fullerenes be improved? How reliable are the values of Delta H-f(0) calculated from hyperhomodesmotic reactions? This work is the first to address these questions. By comparing the results obtained from three hyperhomodesmotic reactions containing only fullerenes, it is illustrated that both the resonance contribution and the strain energy contribution should be considered in the construction of hyperhomodesmotic reactions. An attempt to construct such hyperhomodesmotic reactions for fullerenes has been carried out, and several new insights are indicated.
Resumo:
Tne object of this research was to investigate the behaviour of birdcage scaffolding as used in falsework structures, assess the suitability of existing design methods and make recommendations for a set of design rules. Since excessive deflection is as undesirable in a structure as total collapse, the project was divided into two sections. These were to determine the ultimate vertical and horizontal load-carrying capacity and also the deflection characteristics of any falsework. So theoretical analyses were developed to ascertain the ability of both the individual standards to resist vertical load, and of the bracing to resist horizontal load.Furthermore a model was evolved which would predict the horizontal deflection of a scaffold under load using strain energy methods. These models were checked by three series of experiments. The first was on individual standards under vertical load only. The second series was carried out on full scale falsework structures loading vertically and horizontally to failure. Finally experiments were conducted on scaffold couplers to provide additional verification of the method of predicting deflections. This thesis gives the history of the project and an introduction into the field of scaffolding. It details both the experiments conducted and the theories developed and the correlation between theory and experiment. Finally it makes recommendations for a design method to be employed by scaffolding designers.
Resumo:
The effect of stress on vacancy cluster configurations in silicon is examined using molecular dynamics. At zero pressure, the shape and stability of the vacancy clusters agrees with previous atomistic results. When stress is applied the orientation of small planar clusters changes to reduce the strain energy. The preferred orientation for the vacancy clusters under stress agrees with the experimentally observed orientations of hydrogen platelets in the high stress regions of hydrogen implanted silicon. These results suggest a theory for hydrogen platelet formation. © 2005 The American Physical Society.
Resumo:
The fracture process involves converting potential energy from a strained body into surface energy, thermal energy, and the energy needed to create lattice defects. In dynamic fracture, energy is also initially converted into kinetic energy. This paper uses molecular dynamics (MD) to simulate brittle frcture in silicon and determine how energy is converted from potential energy (strain energy) into other forms.
Resumo:
This paper presents a new interpretation for the Superpave IDT strength test based on a viscoelastic-damage framework. The framework is based on continuum damage mechanics and the thermodynamics of irreversible processes with an anisotropic damage representation. The new approach introduces considerations for the viscoelastic effects and the damage accumulation that accompanies the fracture process in the interpretation of the Superpave IDT strength test for the identification of the Dissipated Creep Strain Energy (DCSE) limit from the test result. The viscoelastic model is implemented in a Finite Element Method (FEM) program for the simulation of the Superpave IDT strength test. The DCSE values obtained using the new approach is compared with the values obtained using the conventional approach to evaluate the validity of the assumptions made in the conventional interpretation of the test results. The result shows that the conventional approach over-estimates the DCSE value with increasing estimation error at higher deformation rates.
Desenvolvimento da célula base de microestruturas periódicas de compósitos sob otimização topológica
Resumo:
This thesis develops a new technique for composite microstructures projects by the Topology Optimization process, in order to maximize rigidity, making use of Deformation Energy Method and using a refining scheme h-adaptative to obtain a better defining the topological contours of the microstructure. This is done by distributing materials optimally in a region of pre-established project named as Cell Base. In this paper, the Finite Element Method is used to describe the field and for government equation solution. The mesh is refined iteratively refining so that the Finite Element Mesh is made on all the elements which represent solid materials, and all empty elements containing at least one node in a solid material region. The Finite Element Method chosen for the model is the linear triangular three nodes. As for the resolution of the nonlinear programming problem with constraints we were used Augmented Lagrangian method, and a minimization algorithm based on the direction of the Quasi-Newton type and Armijo-Wolfe conditions assisting in the lowering process. The Cell Base that represents the composite is found from the equivalence between a fictional material and a preescribe material, distributed optimally in the project area. The use of the strain energy method is justified for providing a lower computational cost due to a simpler formulation than traditional homogenization method. The results are presented prescription with change, in displacement with change, in volume restriction and from various initial values of relative densities.