867 resultados para stepped wedge


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new wideband transition between substrate integrated waveguide (SIW) and rectangular waveguide (RWG) that resembles a right angle waveguide E-bend at Ku/K band is presented. The transition has removable but stable mounting, requires only PCB fabrication and has adaptable quality and bandwidth characteristics depending on the number of substrate layers used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal cylindrical storage structures of significant size, such as silos and vertical-axis tanks, are almost always constructed from many short cylindrical shells of different thickness as the stress resultants on the wall progressively increase towards the base. The resulting increases in thickness are always made in step changes using metal sheets of uniform thickness because of the availability of such source materials. The result is a shell with a stepped wall with multiple discrete steps in thickness. Such shells are very susceptible to buckling under external pressure when empty or partially filled, but the buckling mode may involve only part of the shell height due to the changes in shell thickness. These changes must therefore be accounted for within the design process. A new method of determining the critical buckling resistance of such shells was recently developed, and although it has been shown to be valid, the methodology for its application in practical design has not been set out or shown. This paper therefore briefly describes the new method and demonstrates the manner in which it can be used to produce rapid, safe assessments of cylindrical shells with a wide range of patterns of wall thickness changes. The results are then suitable for direct introduction into such documents as the European standard on metal shells [1] and the ECCS Recommendations [2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to deepen the knowledge about the origin of the CO preoxidation process and the intrinsic catalytic activity of Pt superficial steps toward CO oxidation, a series of CO stripping experiments were performed on stepped Pt electrodes in acidic medium. For the occurrence of CO preoxidation, it was found that it arises (reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with COads; (3) in the presence of traces of CO in solution; (4) in the presence of surface steps. If any of these four conditions is not satisfied, the CO preoxidation pathway does not appear, even though the steps on the electrode surface are completely covered by CO. By controlling the removal of the CO adlayer (voltammetrically), we show that once the CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are released earlier than the (110) step sites. Moreover, if (110) steps are selectively decorated with CO, its oxidation occurs only at potentials ∼150 mV higher than the CO preoxidation peak. Our results systematically demonstrate that step sites are less active to oxidize CO than those ones responsible for the CO preoxidation process. Once the sites responsible for the CO preoxidation are made free, there is no apparent motion of the remaining adsorbed CO layer, suggesting that the activation of the surface controls the whole process, rather than the diffusion of COads toward hypothetically “most active sites”. Voltammetric and chronoamperometric experiments performed on partially covered CO adlayers suggest that adsorbed CO behave as a motionless species during its oxidation, in which the CO adlayer is removed piece by piece. By means of in situ FTIR experiments, the stretching frequency of CO selectively adsorbed on (110) step sites was examined. Band frequency results confirm that those molecules adsorbed on steps are fully coupled with the adsorbed CO on (111) terraces when the surface reaches full coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interpretation of evidence dominates contemporary television crime shows. Inanimate objects and disparate facts are made to speak; technology and expert opinion wring out their stories. In examining these dead pieces of evidence, the investigators search for patterns, discovering living perpetrators and fugitives. Psychology comes in where the evidence is interpreted; the investigators try to think through perpetrators' minds and presumably perverse rationales. Objects are examined. Banal things become precious, put into bags, marked, date- and time-stamped, and stepped around carefully. After a crime, the objects involved are different. After a crime show, our gaze is different; everything is potentially incriminating, perverse. Bags without people don't make sense. Under this gaze, objects acquire a psychology. When we look at a crime scene, the evidence violates us. The work of Melbourne artist Cate Consandine is about objects and how they occupy the space that they occupy. In her practice as a sculptor and throughout her studies at the Victorian College of the Arts, the Sydney College of the Arts, and now Monash, her work has cultivated violent ambiguity. Consandine's work extends across a range of different media, particularly vidoe, objects and spaces. Like a crime show, it activates a particular type of inquisition from the viewer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While research on the management of co-occurring addictive and mental disorders (AMDs) has grown substantially in recent years, we still have little guidance on specific strategies. Consideration of epidemiological research and ethical principles can supplement existing clinical trials in providing a way forward. High frequencies of co-occurring disorders, equity of access for affected individuals and potential clashes between services in priorities and procedures, suggest that a stepped model of care by a single service may often be required. Typically, problems are multiple rather than dual, with potential for mutual influence, suggesting a need for interventions that are sensitive to and encompass complex co-occurring problems. Motivational problems are endemic, initial gains are often partial and unstable, and relapses potentially have serious consequences, suggesting a need for long-term, assertive follow-up. Principles such as these provide a solid framework for designing both services and interventions. However, there is a continuing need for controlled trials that unpack effective components of interventions, and increase their impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a notable shortage of empirical research directed at measuring the magnitude and direction of stress effects on performance in a controlled environment. One reason for this is the inherent difficulties in identifying and isolating direct performance measures for individuals. Additionally most traditional work environments contain a multitude of exogenous factors impacting individual performance, but controlling for all such factors is generally unfeasible (omitted variable bias). Moreover, instead of asking individuals about their self-reported stress levels we observe workers' behavior in situations that can be classified as stressful. For this reason we have stepped outside the traditional workplace in an attempt to gain greater controllability of these factors using the sports environment as our experimental space. We empirically investigate the relationship between stress and performance, in an extreme pressure situation (football penalty kicks) in a winner take all sporting environment (FIFA World Cup and UEFA European Cup competitions). Specifically, we examine all the penalty shootouts between 1976 and 2008 covering in total 16 events. The results indicate that extreme stressors can have a positive or negative impact on Individuals' performance. On the other hand, more commonly experienced stressors do not affect professionals' performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.