910 resultados para soft palate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear stability analysis is presented to study the self-organized instabilities of a highly compliant elastic cylindrical shell filled with a viscous liquid and submerged in another viscous medium. The prototype closely mimics many components of micro-or nanofluidic devices and biological processes such as the budding of a string of pearls inside cells and sausage-string formation of blood vessels. The cylindrical shell is considered to be a soft linear elastic solid with small storage modulus. When the destabilizing capillary force derived from the cross-sectional curvature overcomes the stabilizing elastic and in-plane capillary forces, the microtube can spontaneously self-organize into one of several possible configurations; namely, pearling, in which the viscous fluid in the core of the elastic shell breaks up into droplets; sausage strings, in which the outer interface of the mircrotube deforms more than the inner interface; and wrinkles, in which both interfaces of the thin-walled mircrotube deform in phase with small amplitudes. This study identifies the conditions for the existence of these modes and demonstrates that the ratios of the interfacial tensions at the interfaces, the viscosities, and the thickness of the microtube play crucial roles in the mode selection and the relative amplitudes of deformations at the two interfaces. The analysis also shows asymptotically that an elastic fiber submerged in a viscous liquid is unstable for Y = gamma/(G(e)R) > 6 and an elastic microchannel filled with a viscous liquid should rupture to form spherical cavities (pearling) for Y > 2, where gamma, G(e), and R are the surface tension, elastic shear modulus, and radius, respectively, of the fiber or microchannel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-linked polymer ``gel'' electrolyte obtained from free radical polymerization of a vinyl monomer (acrylonitrile; AN) in a room temperature ionic liquid electrolyte (N,N-methyl butyl pyrrolidinium-bis (trifluoromethanesulphonyl)imide-lithium bis(trifluoromethanesulphonyl) imide;LiTFSI-[Py(1,4)-TFSI]) for application in high rate capability rechargeable lithium-ion batteries is discussed here. This is a novel alternative compared to the often employed approach of using a molecular liquid as the medium for performing the polymerization reaction. The polymer ``gel'' electrolytes (AN:Py(1,4)-TFSI = 0.16-0.18, w/w) showed remarkable compliable mechanical strength and higher thermal stability compared to LiTFSI-[Py(1,4)-TFSI]. Despite two orders increase in magnitude of viscosity of polymer ``gels'', the room temperature ionic conductivity of the ``gels'' (1.1 x 10(-3)-1.7 x 10(-3) Omega(-1) cm(-1)) were nearly identical to that of the ionic liquid (1.8 x 10(-3) Omega(-1) cm(-1)). The present ``gel'' electrolytes did not exhibit any ageing effects on ionic conductivity similar to the conventional polymer gel electrolytes (e.g. high molecular weight polymer + salt + high dielectric constant molecular solvent). The disorder (ionic liquid) to a relative order (cross-linked polymer electrolyte) transformation does not at all influence the concentration of conducting species. The polymer framework is still able to provide efficient pathways for fast ion transport. Unlike the ionic liquid which is impossible to assemble without a conventional separator in a cell, the polymer ``gel'' electrolyte could be conveniently assembled without a separator in a Li vertical bar lithium iron phosphate (LiFePO(4)) cell. Compared to the ionic liquid, the ``gel'' electrolyte showed exceptional cyclability and rate capability (current density: 35-760 mA g(-1) with LiFePO(4) electronically wired with carbon (amorphous or multiwalled nanotube [MWCNT]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the analysis and design of pile foundation used for coastal structures the prediction of cyclic response, which is influenced by the nonlinear behavior, gap (pile soil separation) and degradation (reduction in strength) of soil becomes necessary. To study the effect of the above parameters a nonlinear cyclic load analysis program using finite element method is developed, incorporating the proposed gap and degradation model and adopting an incremental-iterative procedure. The pile is idealized using beam elements and the soil by number of elastoplastic sub-element springs at each node. The effect of gap and degradation on the load-deflection behavior. elasto-plastic sub-element and resistance of the soil at ground-line have been clearly depicted in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling disturbance is unavoidable and hence the laboratory testing most often is on partially disturbed samples. This paper deals with the development of a simple method to assess degree of sample disturbance from the prediction of yield stress due to cementation and comparison of yield stress in compression of partially disturbed sample with reference to a predicted compression path of the clay devoid of any mechanical disturbance. The method uses simple parameters which are normally determined in routine investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report microscopic structural and dynamical measurements on binary mixtures of homopolymers and polymer grafted nanoparticles at high densities in good solvent. We find strong and unexpected anomalies in the structure and dynamics of these binary mixtures, including appearance of spontaneous orientational alignment, as a function of added homopolymers of different molecular weights. Our experiments point to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with novel structural and physical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensuring reliable operation over an extended period of time is one of the biggest challenges facing present day electronic systems. The increased vulnerability of the components to atmospheric particle strikes poses a big threat in attaining the reliability required for various mission critical applications. Various soft error mitigation methodologies exist to address this reliability challenge. A general solution to this problem is to arrive at a soft error mitigation methodology with an acceptable implementation overhead and error tolerance level. This implementation overhead can then be reduced by taking advantage of various derating effects like logical derating, electrical derating and timing window derating, and/or making use of application redundancy, e. g. redundancy in firmware/software executing on the so designed robust hardware. In this paper, we analyze the impact of various derating factors and show how they can be profitably employed to reduce the hardware overhead to implement a given level of soft error robustness. This analysis is performed on a set of benchmark circuits using the delayed capture methodology. Experimental results show upto 23% reduction in the hardware overhead when considering individual and combined derating factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the formation of hydrogels from sodium cholate solution in the presence of a variety of metal ions (Ca2+, Cu2+, Co2+, Zn2+, Cd2+, Hg2+ and Ag+). Morphological studies of the xerogels by electron microscopy reveal the presence of helical nanofibres. The rigid helical framework in the calcium cholate hydrogel was utilised to synthesize hybrid materials (AuNPs and AgNPs). Doping of transition metal salts into the calcium cholate hydrogel brings out the possibility of synthesising metal sulphide nano-architectures keeping the hydrogel network intact. These novel gel-nanoparticle hybrid materials have encouraging application potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report low-dimensional fabrication of technologically important giant dielectric material CaCu3Ti4O12 (CCTO) using soft electron beam lithographic technique. Sol-gel precursor solution of CCTO was prepared using inorganic metal nitrates and Ti-isopropoxide. Employing the prepared precursor solution and e-beam lithographically fabricated resist mask CCTO dots with similar to 200 nm characteristic dimension were fabricated on platinized Si (111) substrate. Phase formation, chemical purity and crystalline nature of fabricated low dimensional structures were investigated with X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED), respectively. Morphological investigations were carried out with the help of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This kind of solution based fabrication of patterned low-dimensional high dielectric architectures might get potential significance for cost-effective technological applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular chemistry is an emerging tool for devising materials that can perform specified functions. The self-assembly of facially amphiphilic bile acid molecules has been extensively utilized for the development of functional soft materials. Supramolecular hydrogels derived from the bile acid backbone act as useful templates for the intercalation of multiple components. Based on this, synthesis of gel-nanoparticle hybrid materials, photoluminescent coating materials, development of a new enzyme assay technique, etc. were achieved in the author's laboratory. The present account highlights some of these achievements.