926 resultados para signal noise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new algorithm based on signal subspace approach is proposed for localizing a sound source in shallow water. In the first instance we assumed an ideal channel with plane parallel boundaries and known reflection properties. The sound source is assumed to emit a broadband stationary stochastic signal. The algorithm takes into account the spatial distribution of all images and reflection characteristics of the sea bottom. It is shown that both range and depth of a source can be measured accurately with the help of a vertical array of sensors. For good results the number of sensors should be greater than the number of significant images; however, localization is possible even with a smaller array but at the cost of higher side lobes. Next, we allowed the channel to be stochastically perturbed; this resulted in random phase errors in the reflection coefficients. The most singular effect of the phase errors is to introduce into the spectral matrix an extra term which may be looked upon as a signal generated coloured noise. It is shown through computer simulations that the signal peak height is reduced considerably as a consequence of random phase errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal Dimensions (FD) are one of the popular measures used for characterizing signals. They have been used as complexity measures of signals in various fields including speech and biomedical applications. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchi's method for estimating FDs. This study may help in gaining a better understanding of the FD complexity measure itself, and for interpreting changing structural complexity of signals in terms of FD. Our results indicate that FD is a useful measure in quantifying structural changes in signal properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present noise measurements of a phase fluorometric oxygen sensor that sets the limits of accuracy for this instrument. We analyze the phase sensitive detection measurement system with the signal ''shot'' noise being the only significant contribution to the system noise. Based on the modulated optical power received by the photomultiplier, the analysis predicts a noise spectral power density that was within 3 dB of the measured power spectral noise density. Our results demonstrate that at a received optical power of 20 fW the noise level was low enough to permit the detection of a change oxygen concentration of 1% at the sensor. We also present noise measurements of a new low-cost version of this instrument that uses a photodiode instead of a photomultiplier. These measurements show that the noise for this instrument was limited by noise generated in the preamplifier following the photodiode. (C) 1996 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The removal of noise and outliers from measurement signals is a major problem in jet engine health monitoring. Topical measurement signals found in most jet engines include low rotor speed, high rotor speed. fuel flow and exhaust gas temperature. Deviations in these measurements from a baseline 'good' engine are often called measurement deltas and the health signals used for fault detection, isolation, trending and data mining. Linear filters such as the FIR moving average filter and IIR exponential average filter are used in the industry to remove noise and outliers from the jet engine measurement deltas. However, the use of linear filters can lead to loss of critical features in the signal that can contain information about maintenance and repair events that could be used by fault isolation algorithms to determine engine condition or by data mining algorithms to learn valuable patterns in the data, Non-linear filters such as the median and weighted median hybrid filters offer the opportunity to remove noise and gross outliers from signals while preserving features. In this study. a comparison of traditional linear filters popular in the jet engine industry is made with the median filter and the subfilter weighted FIR median hybrid (SWFMH) filter. Results using simulated data with implanted faults shows that the SWFMH filter results in a noise reduction of over 60 per cent compared to only 20 per cent for FIR filters and 30 per cent for IIR filters. Preprocessing jet engine health signals using the SWFMH filter would greatly improve the accuracy of diagnostic systems. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator.The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization of underwater acoustic sources is a problem of great interest in the area of ocean acoustics. There exist several algorithms for source localization based on array signal processing.It is of interest to know the theoretical performance limits of these estimators. In this paper we develop expressions for the Cramer-Rao-Bound (CRB) on the variance of direction-of-arrival(DOA) and range-depth estimators of underwater acoustic sources in a shallow range-independent ocean for the case of generalized Gaussian noise. We then study the performance of some of the popular source localization techniques,through simulations, for DOA/range-depth estimation of underwater acoustic sources in shallow ocean by comparing the variance of the estimators with the corresponding CRBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic recording of neural signals is indispensable in designing efficient brain–machine interfaces and to elucidate human neurophysiology. The advent of multichannel micro-electrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system can vary over time due to change in electrode–neuron distance and background noise. We propose a neural amplifier in UMC 130 nm, 1P8M complementary metal–oxide–semiconductor (CMOS) technology. It can be biased adaptively from 200 nA to 2 $mu{rm A}$, modulating input referred noise from 9.92 $mu{rm V}$ to 3.9 $mu{rm V}$. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier and obviates the need of large input capacitance. The amplifier achieves a noise efficiency factor of 2.58. The amplifier can pass signal from 5 Hz to 7 kHz and the bandwidth of the amplifier can be tuned for rejecting low field potentials (LFP) and power line interference. The amplifier achieves a mid-band voltage gain of 37 dB. In vitro experiments are performed to validate the applicability of the neural low noise amplifier in neural recording systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical approach to A/D conversion has been uniform sampling and we get perfect reconstruction for bandlimited signals by satisfying the Nyquist Sampling Theorem. We propose a non-uniform sampling scheme based on level crossing (LC) time information. We show stable reconstruction of bandpass signals with correct scale factor and hence a unique reconstruction from only the non-uniform time information. For reconstruction from the level crossings we make use of the sparse reconstruction based optimization by constraining the bandpass signal to be sparse in its frequency content. While overdetermined system of equations is resorted to in the literature we use an undetermined approach along with sparse reconstruction formulation. We could get a reconstruction SNR > 20dB and perfect support recovery with probability close to 1, in noise-less case and with lower probability in the noisy case. Random picking of LC from different levels over the same limited signal duration and for the same length of information, is seen to be advantageous for reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of weak signal detection in the presence of navigation data bits for Global Navigation Satellite System (GNSS) receivers. Typically, a set of partial coherent integration outputs are non-coherently accumulated to combat the effects of model uncertainties such as the presence of navigation data-bits and/or frequency uncertainty, resulting in a sub-optimal test statistic. In this work, the test-statistic for weak signal detection is derived in the presence of navigation data-bits from the likelihood ratio. It is highlighted that averaging the likelihood ratio based test-statistic over the prior distributions of the unknown data bits and the carrier phase uncertainty leads to the conventional Post Detection Integration (PDI) technique for detection. To improve the performance in the presence of model uncertainties, a novel cyclostationarity based sub-optimal PDI technique is proposed. The test statistic is analytically characterized, and shown to be robust to the presence of navigation data-bits, frequency, phase and noise uncertainties. Monte Carlo simulation results illustrate the validity of the theoretical results and the superior performance offered by the proposed detector in the presence of model uncertainties.