896 resultados para sensor grid database system
Resumo:
An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
El objetivo de este estudio es establecer si la dexmedetomidina (DEX) es segura y efectiva para el manejo coadyuvante de síndrome de abstinencia a alcohol (SAA) a través de la búsqueda de evidencia científica. Metodología: se realiza una revisión sistemática de literatura publicada y no publicada desde enero de 1989 hasta febrero 2016 en PubMed, Embase, Scopus, Bireme, Cochrane library y en otras bases de datos y portales. Los criterios de inclusión fueron ensayos clínicos aleatorizados y no aleatorizados, estudios cuasi-experimentales, estudios de cohorte, y estudios de casos y controles; que incluyeron pacientes mayores de 18 años hospitalizados con diagnóstico de SAA y donde se usó DEX como terapia coadyuvante. Resultados: 7 estudios, 477 pacientes, se incluyeron en el análisis final. Se encontraron dos ensayos clínicos aleatorizados, tres estudios de casos y controles y dos estudios de cohorte retrospectivo. Solo uno de los estudios fue doble ciego y utilizó placebo como comparador. Análisis y conclusiones: en los estudios experimentales se determinan que el uso de DEX como terapia coadyuvante en el manejo de SAA tiene significancia clínica y estadística para disminuir dosis de BZD en las primeras 24 horas de tratamiento; pero no demostraron tener otros beneficios clínicos. En los estudios no aleatorizados existe consenso que relaciona el uso de DEX con menores dosis de BZD de forma temprana. Recomendaciones: no se recomienda el uso de DEX en SAA de forma rutinaria. Se recomienda usar DEX solo en casos en el que exista evidencia fallo terapéutico a BZD.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.
Resumo:
Nowadays, there is an increasing interest in wireless sensor networks (WSN) for environmental monitoring systems because it can be used to improve the quality of life and living conditions are becoming a major concern to people. This paper describes the design and development of a real time monitoring system based on ZigBee WSN characterized by a lower energy consumption, low cost, reduced dimensions and fast adaptation to the network tree topology. The developed system encompasses an optimized sensing process about environmental parameters, low rate transmission from sensor nodes to the gateway, packet parsing and data storing in a remote database and real time visualization through a web server.
Resumo:
A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.
Resumo:
Much information on flavonoid content of Brazilian foods has already been obtained; however, this information is spread in scientific publications and non-published data. The objectives of this work were to compile and evaluate the quality of national flavonoid data according to the United States Department of Agriculture`s Data Quality Evaluation System (USDA-DQES) with few modifications, for future dissemination in the TBCA-USP (Brazilian Food Composition Database). For the compilation, the most abundant compounds in the flavonoid subclasses were considered (flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins) and the analysis of the compounds by HPLC was adopted as criteria for data inclusion. The evaluation system considers five categories, and the maximum score assigned to each category is 20. For each data, a confidence code (CC) was attributed (A, B, C and D), indicating the quality and reliability of the information. Flavonoid data (773) present in 197 Brazilian foods were evaluated. The CC ""C"" (as average) was attributed to 99% of the data and ""B"" (above average) to 1%. The main categories assigned low average scores were: number of samples; sampling plan and analytical quality control (average scores 2, 5 and 4, respectively). The analytical method category received an average score of 9. The category assigned the highest score was the sample handling (20 average). These results show that researchers need to be conscious about the importance of the number and plan of evaluated samples and the complete description and documentation of all the processes of methodology execution and analytical quality control. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
This paper is about a PV system connected to the electric grid by power electronic converters, using classical PI controller. The modelling for the converters emulates the association of a DC-DC boost with a two-level power inverter (TwLI) or three-level power inverter (ThLI) in order to follow the performance of a testing experimental system. Pulse width modulation (PWMo) by sliding mode control (SMCo) associated with space vector modulation (SVMo) is applied to the boost and the inverter. The PV system is described by the five parameters equivalent circuit. Parameter identification and simulation studies are performed for comparison with the testing experimental system.
Resumo:
This paper is about a PV system linked to the electric grid through power converters under cloud scope. The PV system is modeled by the five parameters equivalent circuit and a MPPT procedure is integrated into the modeling. The modeling for the converters models the association of a DC-DC boost with a three-level inverter. PI controllers are used with PWM by sliding mode control associated with space vector modulation controlling the booster and the inverter. A case study addresses a simulation to assess the performance of a PV system linked to the electric grid. Conclusions regarding the integration of the PV system into the electric grid are presented. © IFIP International Federation for Information Processing 2015.
Resumo:
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.
Resumo:
XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015). 15 to 19, May, 2015, III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.