900 resultados para roll over protective structure, frusta, impact, energy absorption, finite element technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concept based upon Equal Channel Angular Extrusion (ECAE) is developed and introduced in the form of a Universal Re-usable Energy Absorption Device 'UREAD'. In impact situations the device utilises the energy required to extrude deformable materials through the shear planes of a set of intersecting channels and hence provides the means to protect engineering structures. The impact force is absorbed through the resistance of a deformable material and the energy is dissipated through an operational stroke. This paper examines the use of this new concept under dynamic loading. The device performance and usability during dynamic impacts are tested in a landing frame type experiment where the effectiveness of the technique in reducing impact loads and energy are also examined. © (2011) Trans Tech Publications Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon embedded SiO2 matrix is formed by annealing the SiO2 films fabricated by plasma enhanced chemical vapor deposition technique. In conjunction with the micro-Ramam spectra, the absorption spectra of the films have been investigated. The blue-shift of absorption edge with decreasing size of silicon crystallites is due to quantum confinement effect. It is found that nanocrystalline silicon is of an indirect band structure, and that the absorption presents an exponential dependance absorption coefficient on photon energy ii! the range of 2.0-3.0 eV, and a sub-band appears in the the range of 1.0-1.5 eV. We believe that the exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the Sub-band absorption is ascribed to transitions between the amorphous silicon states existing in the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k . p method. Numerical results including piezoelectricity, electron and hole levels, as yell as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt-Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Charpy impact fracture behaviour of unnotched specimens of phenolphthalein polyether ketone (PEK-C) was studied over a temperature range from room temperature to 220 degrees C by using an instrumented impact tester. The load-time and energy-time curves of PEK-C at different temperatures were recorded. From these curves, some important parameters, such as the maximum impact load, the maximum stress, the total impact energy, the crack initiation energy, the crack propagation energy etc., were obtained and their temperature dependences of PEK-C were investigated. The point of 100 percent maximum load on the load-time trace was shown to be the yield point. Two parameters, the ductile ratio (D.R.) and the ductility index (D.I.) were applied to characterize the ductility of PEK-C and their relationships to the relaxation processes were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Izod impact fracture behaviour of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a temperature range from room temperature to 240 degrees C by using an instrumented impact tester. The temperature dependence of the maximum load, total impact energy, initiation energy, propagation energy, ductility index (DI) and the relationships between these parameters and the relaxation processes have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absorption heat transformers are thermodynamic systems which are capable of recycling industrial waste heat energy by increasing its temperature. Triple stage heat transformers (TAHTs) can increase the temperature of this waste heat by up to approximately 145˚C. The principle factors influencing the thermodynamic performance of a TAHT and general points of operating optima were identified using a multivariate statistical analysis, prior to using heat exchange network modelling techniques to dissect the design of the TAHT and systematically reassemble it in order to minimise internal exergy destruction within the unit. This enabled first and second law efficiency improvements of up to 18.8% and 31.5% respectively to be achieved compared to conventional TAHT designs. The economic feasibility of such a thermodynamically optimised cycle was investigated by applying it to an oil refinery in Ireland, demonstrating that in general the capital cost of a TAHT makes it difficult to achieve acceptable rates of return. Decreasing the TAHT's capital cost may be achieved by redesigning its individual pieces of equipment and reducing their size. The potential benefits of using a bubble column absorber were therefore investigated in this thesis. An experimental bubble column was constructed and used to track the collapse of steam bubbles being absorbed into a hotter lithium bromide salt solution. Extremely high mass transfer coefficients of approximately 0.0012m/s were observed, showing significant improvements over previously investigated absorbers. Two separate models were developed, namely a combined heat and mass transfer model describing the rate of collapse of the bubbles, and a stochastic model describing the hydrodynamic motion of the collapsing vapour bubbles taking into consideration random fluctuations observed in the experimental data. Both models showed good agreement with the collected data, and demonstrated that the difference between the solution's temperature and its boiling temperature is the primary factor influencing the absorber's performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bi-directional Evolutionary Structural Optimisation (BESO) method is a numerical topology optimisation method developed for use in finite element analysis. This paper presents a particular application of the BESO method to optimise the energy absorbing capability of metallic structures. The optimisation objective is to evolve a structural geometry of minimum mass while ensuring that the kinetic energy of an impacting projectile is reduced to a level which prevents perforation. Individual elements in a finite element mesh are deleted when a prescribed damage criterion is exceeded. An energy absorbing structure subjected to projectile impact will fail once the level of damage results in a critical perforation size. It is therefore necessary to constrain an optimisation algorithm from producing such candidate solutions. An algorithm to detect perforation was implemented within a BESO framework which incorporated a ductile material damage model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phaseshifts, differential, total and momentum transfer cross sections are calculated using an R-matrix approach for the elastic scattering of electrons by argon atoms in the impact energy range 0-19 eV. The coupled-state calculation is based upon a single-configuration atomic ground-state wavefunction coupled to a P pseudostate. A critical assessment of earlier theoretical and experimental data is made and the conclusion is reached that the present results are the most satisfactory over the entire energy range considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results showed that microbial protein synthesis (MCP; 148 vs 171 g/kg DM) and rumen protein degraded balance (DPB; 108 vs 127 g/kg DM) were lower in the CS-Y line, but there were no differences in total truly digested protein in small intestine (DVE) and feed milk value (FMV) between the two lines. In conclusion, the new yellow line had different nutritional, chemical, and structural features compared to the black line. CS-Y provided better nutrient utilization and availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the latest generation of wide-body carbon-fibre composite passenger aircraft has heralded a new era in the utilisation of these materials. The premise of superior specific strength and stiffness, corrosion and fatigue resistance, is tempered by high development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort is currently being directed towards the development of new modelling and simulation tools, at all levels of the development cycle, to mitigate these shortcomings. One of the primary challenges is to reduce the extent of physical testing, in the certification process, by adopting a ‘certification by simulation’ approach. In essence, this aspirational objective requires the ability to reliably predict the evolution and progression of damage in composites. The aerospace industry has been at the forefront of developing advanced composites modelling tools. As the automotive industry transitions towards the increased use of composites in mass-produced vehicles, similar challenges in the modelling of composites will need to be addressed, particularly in the reliable prediction of crashworthiness. While thermoset composites have dominated the aerospace industry, thermoplastics composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. This keynote presentation will outline recent progress and current challenges in the development of finite-element-based predictive modelling tools for capturing impact damage, residual strength and energy absorption capacity of thermoset and thermoplastic composites for crashworthiness assessments.